The impact of boreal forest fire on climate warming

被引:625
|
作者
Randerson, J. T. [1 ]
Liu, H.
Flanner, M. G.
Chambers, S. D.
Jin, Y.
Hess, P. G.
Pfister, G.
Mack, M. C.
Treseder, K. K.
Welp, L. R.
Chapin, F. S.
Harden, J. W.
Goulden, M. L.
Lyons, E.
Neff, J. C.
Schuur, E. A. G.
Zender, C. S.
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
[2] Jackson State Univ, Dept Phys Atmospher Sci & Gen Sci, Jackson, MS 39217 USA
[3] Australian Nucl Sci & Technol Org, Environm Div, Menai, NSW 2234, Australia
[4] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80301 USA
[5] Univ Florida, Dept Bot, Gainesville, FL 32611 USA
[6] CALTECH, Pasadena, CA 91125 USA
[7] Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA
[8] US Geol Survey, Menlo Pk, CA 94025 USA
[9] Univ Colorado, Boulder, CO 80309 USA
关键词
D O I
10.1126/science.1132075
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year ( 34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (- 2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.
引用
收藏
页码:1130 / 1132
页数:3
相关论文
共 50 条