Natural frequencies and modes of a Timoshenko beam

被引:87
|
作者
van Rensburg, N. F. J.
van der Merwe, A. J.
机构
[1] Cape Peninsula Univ Technol, Dept Mech Engn, ZA-8000 Cape Town, South Africa
[2] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
关键词
Timoshenko beam; Euler-Bernoulli beam; natural frequencies; eigenvalues;
D O I
10.1016/j.wavemoti.2006.06.008
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we present a systematic approach to solving the eigenvalue problems associated with the uniform Timoshenko beam model. Properties of the natural frequencies and modes are discussed for the pinned-pinned and cantilever beam, e.g., double eigenvalues, estimates for small and large eigenvalues, significance of dimensionless parameters and remarkable mode shapes. Our results expand on and complement existing results. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 69
页数:12
相关论文
共 50 条
  • [41] NATURAL FREQUENCIES OF TIMOSHENKO BEAMS UNDER COMPRESSIVE AXIAL LOADS
    ABRAMOVICH, H
    JOURNAL OF SOUND AND VIBRATION, 1992, 157 (01) : 183 - 189
  • [42] NATURAL FREQUENCIES AND MODES OF INCLINED CABLES
    TRIANTAFYLLOU, MS
    GRINFOGEL, L
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1986, 112 (01): : 139 - 148
  • [43] NATURAL MODES AND FREQUENCIES OF A SUSPENDED CHAIN
    GOODEY, WJ
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1961, 14 (01): : 118 - &
  • [44] NATURAL FREQUENCIES AND MODES OF SUSPENSION BRIDGES
    WEST, HH
    SUHOSKI, JE
    GESCHWINDNER, LF
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1984, 110 (10): : 2471 - 2486
  • [45] NATURAL FREQUENCIES AND MODES OF SKEW MEMBRANES
    DURVASULA, S
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1968, 44 (06): : 1636 - +
  • [46] Comparison of the Natural Vibration Frequencies of Timoshenko and Bernoulli Periodic Beams
    Domagalski, Lukasz
    MATERIALS, 2021, 14 (24)
  • [47] Scattering and embedded trapped modes for an infinite nonhomogeneous Timoshenko beam
    Aya, Hugo
    Cano, Ricardo
    Zhevandrov, Peter
    JOURNAL OF ENGINEERING MATHEMATICS, 2012, 77 (01) : 87 - 104
  • [48] Resonance interaction of bending and shear modes in a nonuniform timoshenko beam
    Perel M.V.
    Fialkovsky I.V.
    Kiselev A.P.
    Journal of Mathematical Sciences, 2002, 111 (5) : 3775 - 3790
  • [49] Nonlocal Timoshenko simply supported beam: Second spectrum and modes
    Claeyssen, Julio R.
    Tolfo, Daniela de R.
    Copetti, Rosemaira D.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (07):
  • [50] Scattering and embedded trapped modes for an infinite nonhomogeneous Timoshenko beam
    Hugo Aya
    Ricardo Cano
    Peter Zhevandrov
    Journal of Engineering Mathematics, 2012, 77 : 87 - 104