Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering

被引:89
|
作者
Liu, Jun [1 ,2 ]
Chen, Wenchuan [1 ,2 ]
Zhao, Zhihe [2 ]
Xu, Hockin H. K. [1 ,3 ,4 ,5 ]
机构
[1] Univ Maryland, Sch Dent, Dept Endodont Prosthodont & Operat Dent, Biomat & Tissue Engn Div, Baltimore, MD 21201 USA
[2] Sichuan Univ, West China Hosp Stomatol, State Key Lab Oral Dis, Chengdu 610041, Peoples R China
[3] Univ Maryland, Sch Med, Ctr Stem Cell Biol & Regenerat Med, Baltimore, MD 21201 USA
[4] Univ Maryland, Sch Med, Marlene & Stewart Greenebaum Canc Ctr, Baltimore, MD 21201 USA
[5] Univ Maryland Baltimore Cty, Dept Mech Engn, Baltimore, MD 21250 USA
基金
中国国家自然科学基金;
关键词
Bone morphogenetic protein 2 (BMP2); Bone tissue engineering; Calcium phosphate cement (CPC); Gene transduction; Induced pluripotent stem cells (iPSCs); RGD immobilization; BMP-2; GENE-TRANSFER; MORPHOGENETIC PROTEIN-2; LENTIVIRAL VECTOR; UMBILICAL-CORD; IN-VITRO; HYDROXYAPATITE CEMENT; ALKALINE-PHOSPHATASE; FEMORAL DEFECTS; REGENERATION; EXPRESSION;
D O I
10.1016/j.biomaterials.2013.07.029
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Human induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) are a promising choice of patient-specific stem cells with superior capability of cell expansion. There has been no report on bone morphogenic protein 2 (BMP2) gene modification of iPSC-MSCs for bone tissue engineering. The objectives of this study were to: (1) genetically modify iPSC-MSCs for BMP2 delivery; and (2) to seed BMP2 gene-modified iPSC-MSCs on calcium phosphate cement (CPC) immobilized with RGD for bone tissue engineering. iPSC-MSCs were infected with green fluorescence protein (GFP-iPSC-MSCs), or BMP2 lentivirus (BMP2-iPSC-MSCs). High levels of GFP expression were detected and more than 68% of GFP-iPSC-MSCs were GFP positive. BMP2-iPSC-MSCs expressed higher BMP2 levels than iPSC-MSCs in quantitative RT-PCR and ELISA assays (p < 0.05). BMP2-iPSC-MSCs did not compromise growth kinetics and cell cycle stages compared to iPSC-MSCs. After 14 d in osteogenic medium, ALP activity of BMP2-iPSC-MSCs was 1.8 times that of iPSC-MSCs (p < 0.05), indicating that BMP2 gene transduction of iPSC-MSCs enhanced osteogenic differentiation. BMP2-iPSC-MSCs were seeded on CPC scaffold bio-functionalized with RGD (RGD-CPC). BMP2-iPSC-MSC5 attached well on RGD-CPC. At 14 d, COL1A1 expression of BMP2-iPSC-MSCs was 1.9 times that of iPSC-MSCs. OC expression of BMP2-iPSC-MSCs was 2.3 times that of iPSC-MSCs. Bone matrix mineralization by BMP2-iPSC-MSCs was 1.8 times that of iPSC-MSCs at 21 d. In conclusion, iPSC-MSCs seeded on CPC were suitable for bone tissue engineering. BMP2 gene-modified iPSC-MSCs on RGD-CPC underwent osteogenic differentiation, and the overexpression of BMP2 in iPSC-MSCs enhanced differentiation and bone mineral production on RGD-CPC. BMP2-iPSC-MSC seeding on RGD-CPC scaffold is promising to enhance bone regeneration efficacy. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7862 / 7872
页数:11
相关论文
共 50 条
  • [31] A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering
    Thakoon Thitiset
    Siriporn Damrongsakkul
    Supansa Yodmuang
    Wilairat Leeanansaksiri
    Jirun Apinun
    Sittisak Honsawek
    Biomaterials Research, 25
  • [32] A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering
    Thitiset, Thakoon
    Damrongsakkul, Siriporn
    Yodmuang, Supansa
    Leeanansaksiri, Wilairat
    Apinun, Jirun
    Honsawek, Sittisak
    BIOMATERIALS RESEARCH, 2021, 25 (01)
  • [33] Development and characterization of waste equine bone-derived calcium phosphate cements with human alveolar bone-derived mesenchymal stem cells
    Jang, Kyoung-Je
    Seonwoo, Hoon
    Yang, Minho
    Park, Sangbae
    Lim, Ki Taek
    Kim, Jangho
    Choung, Pill-Hoon
    Chung, Jong Hoon
    CONNECTIVE TISSUE RESEARCH, 2021, 62 (02) : 164 - 175
  • [34] The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering
    Chuenjitkuntaworn, Boontharika
    Osathanon, Thanaphum
    Nowwarote, Nunthawan
    Supaphol, Pitt
    Pavasant, Prasit
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2016, 104 (01) : 264 - 271
  • [35] Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration
    Millan, Carola
    Vivanco, Juan F.
    Benjumeda-Wijnhoven, Isabel M.
    Bjelica, Suncica
    Santibanez, Juan F.
    CELL BIOLOGY AND TRANSLATIONAL MEDICINE, VOL 3: STEM CELLS, BIO-MATERIALS AND TISSUE ENGINEERING, 2018, 1107 : 91 - 112
  • [36] Human Embryonic Stem Cell-Derived Mesenchymal Stem Cell Seeding on Calcium Phosphate Cement-Chitosan-RGD Scaffold for Bone Repair
    Chen, Wenchuan
    Zhou, Hongzhi
    Weir, Michael D.
    Tang, Minghui
    Bao, Chongyun
    Xu, Hockin H. K.
    TISSUE ENGINEERING PART A, 2013, 19 (7-8) : 915 - 927
  • [37] Smart Calcium Phosphate Bioceramic Scaffold for Bone Tissue Engineering
    Daculsi, Guy
    Miramond, Thomas
    Borget, Pascal
    Baroth, Serge
    BIOCERAMICS 24, 2013, 529-530 : 19 - +
  • [38] Osteogenic differentiation of human mesenchymal stem cells on substituted calcium phosphate/chitosan composite scaffold
    Ressler, Antonia
    Antunovic, Maja
    Teruel-Biosca, Laura
    Ferrer, Gloria Gallego
    Babic, Slaven
    Urlic, Inga
    Ivankovic, Marica
    Ivankovic, Hrvoje
    CARBOHYDRATE POLYMERS, 2022, 277
  • [39] Effects of tricalcium phosphate in polycaprolactone scaffold for mesenchymal stem cell-based bone tissue engineering
    Bao, Chaolemeng
    Chong, Mark S. K.
    Qin, Lei
    Fan, Yiping
    Teo, Erin Yiling
    Sandikin, Dedy
    Choolani, Mahesh
    Chan, Jerry Kok Yen
    MATERIALS TECHNOLOGY, 2019, 34 (06) : 361 - 367
  • [40] BIOENGINEERING SIMULTANEOUSLY BONE AND BONE MARROW TISSUE WITH A CALCIUM CARBONATE SCAFFOLD AND HUMAN MESENCHYMAL STEM CELLS
    Sladkova, M.
    Manassero, M.
    Myrtil, V.
    Savari, H.
    Fall, M.
    Thomas, D.
    Bensidhoum, M.
    Logeart-Avramoglou, D.
    Petite, H.
    WOUND REPAIR AND REGENERATION, 2013, 21 (06) : A83 - A83