THE DETERMINISTIC KERMACK-MCKENDRICK MODEL BOUNDS THE GENERAL STOCHASTIC EPIDEMIC

被引:5
|
作者
Wilkinson, Robert R. [1 ]
Ball, Frank G. [2 ]
Sharkey, Kieran J. [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
General stochastic epidemic; deterministic general epidemic; SIR; Kermack-McKendrick; message passing; bound;
D O I
10.1017/jpr.2016.62
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that, for Poisson transmission and recovery processes, the classic susceptible -> infected -> recovered (SIR) epidemic model of Kermack and McKendrick provides, for any given time t > 0, a strict lower bound on the expected number of susceptibles and a strict upper bound on the expected number of recoveries in the general stochastic SIR epidemic. The proof is based on the recent message passing representation of SIR epidemics applied to a complete graph.
引用
收藏
页码:1031 / 1040
页数:10
相关论文
共 50 条
  • [21] BI-HAMILTONIAN STRUCTURE OF THE KERMACK-MCKENDRICK MODEL FOR EPIDEMICS
    NUTKU, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21): : L1145 - L1146
  • [22] AN APPLICATION OF KERMACK-MCKENDRICK THEORY TO EPIDEMIOLOGY OF SCHISTOSOMIASIS
    GOFFMAN, W
    WARREN, KS
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 1970, 19 (02): : 278 - &
  • [23] Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission
    Wang, Zhi-Cheng
    Wu, Jianhong
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2113): : 237 - 261
  • [24] A Kermack-McKendrick model applied to an infectious disease in a natural population
    Roberts, M.G.
    Mathematical Medicine and Biology, 1999, 16 (04): : 319 - 332
  • [25] A Kermack-McKendrick model applied to an infectious disease in a natural population
    Roberts, MG
    IMA JOURNAL OF MATHEMATICS APPLIED IN MEDICINE AND BIOLOGY, 1999, 16 (04): : 319 - 332
  • [26] Generalization of the Kermack-McKendrick SIR Model to a Patchy Environment for a Disease with Latency
    Li, J.
    Zou, X.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2009, 4 (02) : 92 - 118
  • [27] Backstepping Observers for Two Linearized Kermack-McKendrick Models
    Sano, Hideki
    Wakaiki, Masashi
    Maruyama, Hayate
    IFAC PAPERSONLINE, 2018, 51 (32): : 456 - 461
  • [28] Lambert's W meets Kermack-McKendrick Epidemics
    20154101370030
    Pakes, Anthony G. (tony.pakes@uwa.edu.au), 1600, Oxford University Press (80):
  • [29] On a Pandemic Threshold Theorem of the Early Kermack-McKendrick Model with Individual Heterogeneity
    Inaba, Hisashi
    MATHEMATICAL POPULATION STUDIES, 2014, 21 (02) : 95 - 111
  • [30] The cost optimal control system based on the Kermack-Mckendrick worm propagation model
    Tong, Xiao-Jun
    Zhang, Miao
    Wang, Zhu
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2016, 10 (02) : 82 - 89