THE DETERMINISTIC KERMACK-MCKENDRICK MODEL BOUNDS THE GENERAL STOCHASTIC EPIDEMIC

被引:5
|
作者
Wilkinson, Robert R. [1 ]
Ball, Frank G. [2 ]
Sharkey, Kieran J. [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
General stochastic epidemic; deterministic general epidemic; SIR; Kermack-McKendrick; message passing; bound;
D O I
10.1017/jpr.2016.62
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that, for Poisson transmission and recovery processes, the classic susceptible -> infected -> recovered (SIR) epidemic model of Kermack and McKendrick provides, for any given time t > 0, a strict lower bound on the expected number of susceptibles and a strict upper bound on the expected number of recoveries in the general stochastic SIR epidemic. The proof is based on the recent message passing representation of SIR epidemics applied to a complete graph.
引用
收藏
页码:1031 / 1040
页数:10
相关论文
共 50 条
  • [1] GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL
    CAPASSO, V
    SERIO, G
    MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) : 43 - 61
  • [2] The Kermack-McKendrick epidemic model revisited
    Brauer, F
    MATHEMATICAL BIOSCIENCES, 2005, 198 (02) : 119 - 131
  • [3] Kermack-McKendrick epidemic model revisited
    Stepan, Josef
    Hlubinka, Daniel
    KYBERNETIKA, 2007, 43 (04) : 395 - 414
  • [4] An extension of the Kermack-McKendrick model for AIDS epidemic
    Huang, XC
    Villasana, M
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2005, 342 (04): : 341 - 351
  • [5] The Kermack-McKendrick epidemic model with variable infectivity modified
    Skakauskas, V
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
  • [6] Traveling waves in the Kermack-McKendrick epidemic model with latent period
    He, Junfeng
    Tsai, Je-Chiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):
  • [7] THE KERMACK-MCKENDRICK EPIDEMIC THRESHOLD THEOREM - DISCUSSION
    ANDERSON, RM
    BULLETIN OF MATHEMATICAL BIOLOGY, 1991, 53 (1-2) : 3 - 32
  • [8] STANDARD FORM FOR KERMACK-MCKENDRICK EPIDEMIC EQUATIONS
    DEAKIN, MAB
    BULLETIN OF MATHEMATICAL BIOLOGY, 1975, 37 (01) : 91 - 95
  • [9] TRAVELING WAVES IN A NONLOCAL DISPERSAL KERMACK-MCKENDRICK EPIDEMIC MODEL
    Yang, Fei-Ying
    Li, Yan
    Li, Wan-Tong
    Wang, Zhi-Cheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (07): : 1969 - 1993
  • [10] An analytical solution for the Kermack-McKendrick model
    Carvalho, Alexsandro M.
    Goncalves, Sebastian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 566