Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus

被引:15
|
作者
Su, Wen [1 ,7 ]
Wang, Chengmin [1 ]
Luo, Jing [1 ]
Zhao, Yuliang [1 ]
Wu, Yan [2 ]
Chen, Lin [1 ,7 ]
Zhao, Na [1 ,7 ]
Li, Meng [1 ,7 ]
Xing, Chao [1 ]
Liu, Huimin [1 ]
Zhang, Hong [1 ]
Chang, Yung-fu [5 ]
Li, Tianxian [6 ]
Ding, Hua [2 ]
Wan, Xiufeng [3 ,4 ]
He, Hongxuan [1 ]
机构
[1] Chinese Acad Sci, Inst Zool, Natl Res Ctr Wildlife Born Dis, Beijing 100101, Peoples R China
[2] Hangzhou Ctr Dis Control & Prevent, Dept Infect Dis, Hangzhou 310021, Zhejiang, Peoples R China
[3] Mississippi State Univ, Dept Basic Sci, Coll Vet Med, Mississippi State, MS 39762 USA
[4] Mississippi State Univ, Inst Genom Biocomp & Biotechnol, Mississippi State, MS 39762 USA
[5] Cornell Univ, Dept Populat Med & Diagnost Sci, Coll Vet Med, Ithaca, NY 14853 USA
[6] Chinese Acad Sci, Wuhan Inst Virol, State Key Lab Virol, Wuhan 430071, Hubei, Peoples R China
[7] Univ Chinese Acad Sci, Beijing 100101, Peoples R China
来源
CELL REPORTS | 2015年 / 12卷 / 11期
基金
中国国家自然科学基金;
关键词
H7N9; VIRUS; HUMAN INFECTION; A(H7N9) VIRUS; AIRBORNE TRANSMISSION; RESPIRATORY DROPLET; HYBRID VIRUSES; HONG-KONG; CHINA; REASSORTMENT; EVOLUTION;
D O I
10.1016/j.celrep.2015.08.029
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Since 2013, avian influenza A(H7N9) viruses have diversified into multiple lineages by dynamically reassorting with other viruses, especially H9N2, in Chinese poultry. Despite concerns about the pandemic threat posed by H7N9 viruses, little is known about the biological properties of H7N9 viruses that may recruit internal genes from genetically distinct H9N2 viruses circulating among wild birds. Here, we generated 63 H7N9 reassortants derived from an avian H7N9 and a wild-bird-origin H9N2 virus. Compared with the wild-type parent, 25/63 reassortants had increased pathogenicity in mice. A reassortant containing PB1 of the H9N2 virus was highly lethal to mice and chickens but was not transmissible to guinea pigs by airborne routes; however, three substitutions associated with adaptation to mammals conferred airborne transmission to the virus. The emergence of the H7N9-pandemic reassortant virus highlights that continuous monitoring of H7N9 viruses is needed, especially at the domestic poultry/wild bird interface.
引用
收藏
页码:1831 / 1841
页数:11
相关论文
共 50 条
  • [31] Receptor binding by an H7N9 influenza virus from humans
    Xiong, Xiaoli
    Martin, Stephen R.
    Haire, Lesley F.
    Wharton, Stephen A.
    Daniels, Rodney S.
    Bennett, Michael S.
    McCauley, John W.
    Collins, Patrick J.
    Walker, Philip A.
    Skehel, John J.
    Gamblin, Steven J.
    NATURE, 2013, 499 (7459) : 496 - +
  • [32] Receptor binding by an H7N9 influenza virus from humans
    Xiaoli Xiong
    Stephen R. Martin
    Lesley F. Haire
    Stephen A. Wharton
    Rodney S. Daniels
    Michael S. Bennett
    John W. McCauley
    Patrick J. Collins
    Philip A. Walker
    John J. Skehel
    Steven J. Gamblin
    Nature, 2013, 499 : 496 - 499
  • [33] Continuous reassortments with local chicken H9N2 virus underlie the human-infecting influenza A(H7N9) virus in the new influenza season, Guangdong, China
    Wenbao Qi
    Weifeng Shi
    Wei Li
    Lihong Huang
    Huanan Li
    Ying Wu
    Jinghua Yan
    Peirong Jiao
    Baoli Zhu
    Juncai Ma
    George FGao
    Ming Liao
    Di Liu
    Protein & Cell, 2014, 5 (11) : 878 - 882
  • [34] Continuous reassortments with local chicken H9N2 virus underlie the human-infecting influenza A (H7N9) virus in the new influenza season, Guangdong, China
    Qi, Wenbao
    Shi, Weifeng
    Li, Wei
    Huang, Lihong
    Li, Huanan
    Wu, Ying
    Yan, Jinghua
    Jiao, Peirong
    Zhu, Baoli
    Ma, Juncai
    Gao, George F.
    Liao, Ming
    Liu, Di
    PROTEIN & CELL, 2014, 5 (11) : 878 - 882
  • [35] Effectiveness of Whole, Inactivated, Low Pathogenicity Influenza A( H7N9) Vaccine against Antigenically Distinct, Highly Pathogenic H7N9 Virus
    Hatta, Masato
    Zhong, Gongxun
    Chiba, Shiho
    Lopes, Tiago J. S.
    Neumann, Gabriele
    Kawaoka, Yoshihiro
    EMERGING INFECTIOUS DISEASES, 2018, 24 (10) : 1910 - 1913
  • [36] Phylogenetic and evolutionary analysis of influenza A H7N9 virus
    Babakir-Mina, Muhammed
    Dimonte, Salvatore
    Lo Presti, Alessandra
    Cella, Eleonora
    Perno, Carlo Federico
    Ciotti, Marco
    Ciccozzi, Massimo
    NEW MICROBIOLOGICA, 2014, 37 (03): : 369 - 376
  • [37] Antigenic Drift of Influenza A(H7N9) Virus Hemagglutinin
    Ning, Tingting
    Nie, Jianhui
    Huang, Weijin
    Li, Changgui
    Li, Xuguang
    Liu, Qiang
    Zhao, Hui
    Wang, Youchun
    JOURNAL OF INFECTIOUS DISEASES, 2019, 219 (01): : 19 - 25
  • [38] Immunity to the newly emerged A/H7N9 influenza virus
    Wang, Z.
    Wan, Y.
    Zhang, A.
    Qiu, C.
    Quinones-Parra, S.
    Loh, L.
    Nguyen, O.
    Ren, Y.
    Thomas, P.
    Inouye, M.
    Zhang, X.
    Doherty, P.
    Xu, J.
    Kedzierska, K.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 : 623 - 623
  • [39] Novel human H7N9 influenza virus in China
    Wang, Chengmin
    Luo, Jing
    Wang, Jing
    Su, Wen
    Gao, Shanshan
    Zhang, Min
    Xie, Li
    Ding, Hua
    Liu, Shelan
    Liu, Xiaodong
    Chen, Yu
    Jia, Yaxiong
    He, Hongxuan
    INTEGRATIVE ZOOLOGY, 2014, 9 (03): : 372 - 375
  • [40] Nosocomial transmission of avian influenza virus A (H7N9)
    van der Sande, Marianne A. B.
    van der Hoek, Wim
    BMJ-BRITISH MEDICAL JOURNAL, 2015, 351