Properties and Inference for Proportional Hazard Models

被引:0
|
作者
Martinez-Florez, Guillermo [1 ]
Moreno-Arenas, German [2 ]
Vergara-Cardozo, Sandra [3 ]
机构
[1] Univ Cordoba, Fac Ciencias, Dept Matemat & Estadist, Monteria, Colombia
[2] Univ Ind Santander, Fac Ciencias, Escuela Matemat, Bucaramanga, Colombia
[3] Univ Nacl Colombia, Fac Ciencias, Dept Estadist, Bogota, Colombia
来源
REVISTA COLOMBIANA DE ESTADISTICA | 2013年 / 36卷 / 01期
关键词
Hazard function; Kurtosis; Method of moments; Profile likelihood; Proportional hazard model; Skewness; Skew-normal distribution; DISTRIBUTIONS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider an arbitrary continuous cumulative distribution function F(x) with a probability density function f(x) = dF(x)/dx and hazard function h(f)(x) = f(x)/[1 - F(x)]. We propose a new family of distributions, the so-called proportional hazard distribution-function, whose hazard function is proportional to h(f)(x). The new model can fit data with high asymmetry or kurtosis outside the range covered by the normal, t-student and logistic distributions, among others. We estimate the parameters by maximum likelihood, profile likelihood and the elemental percentile method. The observed and expected information matrices are determined and likelihood tests for some hypotheses of interest are also considered in the proportional hazard normal distribution. We show an application to real data, which illustrates the adequacy of the proposed model.
引用
收藏
页码:95 / 114
页数:20
相关论文
共 50 条
  • [31] AN EXTENSION OF PARTIAL LIKELIHOOD METHODS FOR PROPORTIONAL HAZARD MODELS TO GENERAL TRANSFORMATION MODELS
    DOKSUM, KA
    ANNALS OF STATISTICS, 1987, 15 (01): : 325 - 345
  • [32] Maximum penalized likelihood estimation of mixed proportional hazard models
    Huh, K
    Postert, AK
    Sickles, RC
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (09) : 2143 - 2164
  • [33] Test of equality of proportional hazard models with jointly censored data
    Zhang, Ting
    Zhu, Xiaojun
    Xie, Dejun
    Su, Feng
    Balakrishnan, Narayanaswamy
    International Journal of Data Science, 2022, 7 (01): : 1 - 21
  • [34] Predictive maintenance for aircraft components using proportional hazard models
    Verhagen, Wim J. C.
    De Boer, Lennaert W. M.
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2018, 12 : 23 - 30
  • [35] Comparing alternative models: log vs Cox proportional hazard?
    Basu, A
    Manning, WG
    Mullahy, J
    HEALTH ECONOMICS, 2004, 13 (08) : 749 - 765
  • [36] Misspecified proportional hazard models and confirmatory analysis of survival data
    Parner, ET
    Keiding, N
    BIOMETRIKA, 2001, 88 (02) : 459 - 468
  • [37] Robust inference for univariate proportional hazards frailty regression models
    Kosorok, MR
    Lee, BL
    Fine, JP
    ANNALS OF STATISTICS, 2004, 32 (04): : 1448 - 1491
  • [38] On Bayesian inference for proportional hazards models using noninformative priors
    Kim, SW
    Ibrahim, JG
    LIFETIME DATA ANALYSIS, 2000, 6 (04) : 331 - 341
  • [39] On Bayesian Inference for Proportional Hazards Models Using Noninformative Priors
    Seong W. Kim
    Joseph G. Ibrahim
    Lifetime Data Analysis, 2000, 6 : 331 - 341
  • [40] Parametric inference from system lifetime data under a proportional hazard rate model
    Ng, Hon Keung Tony
    Navarro, Jorge
    Balakrishnan, Narayanaswamy
    METRIKA, 2012, 75 (03) : 367 - 388