Long-memory;
linear model;
autoregressive process;
forecast error;
D O I:
10.1051/ps:2008015
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We present two approaches for linear prediction of long-memory time series. The first approach consists in truncating the Wiener-Kolmogorov predictor by restricting the observations to the last k terms, which are the only available data in practice. We derive the asymptotic behaviour of the mean-squared error as k tends to +infinity. The second predictor is the finite linear least-squares predictor i.e. the projection of the forecast value on the last k observations. It is shown that these two predictors converge to the Wiener Kolmogorov predictor at the same rate k(-1).
机构:
Univ York, Dept Math, York, N Yorkshire, EnglandUniv York, Dept Math, York, N Yorkshire, England
Li, Degui
Robinson, Peter M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ York, Dept Math, York, N Yorkshire, England
London Sch Econ, Dept Econ, London WC2A 2AE, EnglandUniv York, Dept Math, York, N Yorkshire, England
Robinson, Peter M.
Shang, Han Lin
论文数: 0引用数: 0
h-index: 0
机构:
Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Canberra, ACT, AustraliaUniv York, Dept Math, York, N Yorkshire, England
机构:
Univ Liverpool, Dept Math Sci, Div Stat & OR, Liverpool L69 7ZL, Merseyside, EnglandUniv Liverpool, Dept Math Sci, Div Stat & OR, Liverpool L69 7ZL, Merseyside, England
Bhansali, R
Kokoszka, PS
论文数: 0引用数: 0
h-index: 0
机构:
Univ Liverpool, Dept Math Sci, Div Stat & OR, Liverpool L69 7ZL, Merseyside, EnglandUniv Liverpool, Dept Math Sci, Div Stat & OR, Liverpool L69 7ZL, Merseyside, England
机构:
E China Normal Univ, Sch Informat Sci & Technol, Shanghai 200241, Peoples R ChinaE China Normal Univ, Sch Informat Sci & Technol, Shanghai 200241, Peoples R China
Li, Ming
Li, Jia-Yue
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Sch Resources & Environm Sci, Shanghai 200062, Peoples R China
Minist Educ China, Key Lab Geog Informat Sci, Shanghai 200062, Peoples R ChinaE China Normal Univ, Sch Informat Sci & Technol, Shanghai 200241, Peoples R China