Nadaraya-Watson estimator for sensor fusion

被引:12
|
作者
Rao, NSV
机构
[1] Oak Ridge National Laboratory Center for Engineering Systems Advanced Research, Oak Ridge
关键词
sensor fusion; fusion rule estimation; empirical estimation; Nadaraya-Watson estimator;
D O I
10.1117/1.601136
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In a system of N sensors, the sensor S-j, j=1,2,..., N, outputs Y-(j) is an element of [0,1], according to an unknown probability density p(j)(Y-(j)parallel to X), corresponding to input X is an element of [0,1]. A training n-sample (X(1),Y-1),(X(2),Y-2),...,(X(n),Y-n) is given where Y-i=(Y-i((1)),Y-i((2)),..., Y-i((N))) such that Y-i((j)) is the output of S-j in response to input X(i). The problem is to estimate a fusion rule f:[0,1](N)-->[0,1], based on the sample, such that the expected square error I(f) =integral[X-f(Y)](2)p(Y parallel to X)p(X)dY((1)) dY((2))... dY((N))dX is minimized over a family of functions F with uniformly bounded modulus of smoothness, where Y=(Y-(1), Y-(2),..., Y-(N)). Let f* minimize I(.) over F; f* cannot be computed since the underlying densities are unknown. We estimate the sample size sufficient to ensure that Nadaraya-Watson estimator (f) over cap satisfies P[I((f) over cap)-I(f*)> epsilon]<delta for any epsilon>0 and delta, 0< delta<1. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页码:642 / 647
页数:6
相关论文
共 50 条
  • [31] Central limit theorem for quadratic errors of Nadaraya-Watson regression estimator under dependence
    Zhi-Ming Luo
    Gyu Moon Song
    Tae Yoon Kim
    [J]. Journal of the Korean Statistical Society, 2011, 40 : 425 - 435
  • [32] Nadaraya-Watson estimators for reflected stochastic processes
    Han, Yuecai
    Zhang, Dingwen
    [J]. ACTA MATHEMATICA SCIENTIA, 2024, 44 (01) : 143 - 160
  • [33] Weighted Nadaraya-Watson Estimation of Conditional Expected Shortfall
    Kato, Kengo
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2012, 10 (02) : 265 - 291
  • [34] Nadaraya-Watson estimators for reflected stochastic processes
    Yuecai Han
    Dingwen Zhang
    [J]. Acta Mathematica Scientia, 2024, 44 : 143 - 160
  • [35] On the asymptotic behaviour of the recursive Nadaraya-Watson estimator associated with the recursive sliced inverse regression method
    Bercu, Bernard
    Thi Mong Ngoc Nguyen
    Saracco, Jerome
    [J]. STATISTICS, 2015, 49 (03) : 660 - 679
  • [36] Learning Invariant Representations with a Nonparametric Nadaraya-Watson Head
    Wang, Alan Q.
    Nguyen, Minh
    Sabuncu, Mert R.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [37] Iterative Nadaraya-Watson Distribution Transfer for Colour Grading
    Alghamdi, Hana
    Dahyot, Rozenn
    [J]. 2020 IEEE 22ND INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2020,
  • [38] Reweighted Nadaraya-Watson estimation of jump-diffusion models
    Hanif, Muhammad
    Wang HanChao
    Lin ZhengYan
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (05) : 1005 - 1016
  • [39] Reweighted Nadaraya-Watson estimation of jump-diffusion models
    Muhammad Hanif
    HanChao Wang
    ZhengYan Lin
    [J]. Science China Mathematics, 2012, 55 : 1005 - 1016
  • [40] Design optimisation of the Nadaraya-Watson fuser using a genetic algorithm
    Wellington, SJ
    Vincent, JD
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL I, 2002, : 327 - 332