Dipeptide membranes for CO2 separation: A molecular simulation study

被引:6
|
作者
Zhao, Zeyu [1 ]
Liu, Jie [1 ]
Jiang, Jianwen [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
关键词
CO2; separation; Dipeptides; Membranes; Permeability; Selectivity; Molecular simulation; CAPTURE; SEQUESTRATION; CRYSTALS;
D O I
10.1016/j.fluid.2020.112570
中图分类号
O414.1 [热力学];
学科分类号
摘要
Molecular crystals of dipeptides with a high density of uniform pores have received growing interest for gas separation. Particularly, hydrophobic dipeptides can form one-dimensional straight pores with sizes ranging from 0.37 to 0.50 nm. A molecular simulation study is reported here to investigate the membrane separation of CO2/N-2 and CO2/CH4 mixtures in eight dipeptides namely Ala-Val (AV), Val-Ala (VA), Ala-lle (AI), Ile-Ala (IA), Val-Ile (VI), Ile-Val (IV), Val-Val (VV) and Leu-Ser (LS). The gas permeation and separation performance are evaluated using a molecular dynamics simulation method with a constant-pressure difference. The pore size and helicity are revealed to be the key factors governing permeation. A higher permeability can be achieved in a dipeptide membrane with a larger pore size or a lower helicity. Among the eight, six (AV, LS, AI, VA, W and VI) surpass the Robeson upper bound for both gas mixtures. It is identified that AI and AV outperform other dipeptides for CO2/N-2 separation, while AI, VA and VV are better for CO2/CH4 separation. The permselective separation of both gas mixtures is dominated by the preferential sorption of CO2 over N-2 and CH4, respectively. This simulation study provides microscopic insights into CO2 separation in dipeptide membranes and suggests their potential use for gas separation. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] High performance composite CO2 separation membranes
    Patricio, S. G.
    Papaioannou, E.
    Zhang, G.
    Metcalfe, I. S.
    Marques, F. M. B.
    JOURNAL OF MEMBRANE SCIENCE, 2014, 471 : 211 - 218
  • [32] Enhanced CO2 Separation Achieved by Fluorinated Membranes
    Yang, Zhenzhen
    CHEM, 2020, 6 (03): : 541 - 543
  • [33] Optimization of PIM-membranes for separation of CO2
    Bengtson, G.
    Neumann, S.
    Filiz, V.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 796 - 798
  • [34] Functionalized ionic liquid membranes for CO2 separation
    Gao, Hongshuai
    Bai, Lu
    Han, Jiuli
    Yang, Bingbing
    Zhang, Suojiang
    Zhang, Xiangping
    CHEMICAL COMMUNICATIONS, 2018, 54 (90) : 12671 - 12685
  • [35] High performance polymer membranes for CO2 separation
    Kim, Seungju
    Lee, Young Moo
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2013, 2 (02) : 238 - 244
  • [36] Advances in organic microporous membranes for CO2 separation
    Wang, Yuhan
    Jiang, Haifei
    Guo, Zheyuan
    Ma, Hanze
    Wang, Shaoyu
    Wang, Hongjian
    Song, Shuqing
    Zhang, Junfeng
    Yin, Yan
    Wu, Hong
    Jiang, Zhongyi
    Guiver, Michael D.
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (01) : 53 - 75
  • [37] SPEEK/Matrimid blend membranes for CO2 separation
    Khan, Asim Laeeq
    Li, Xianfeng
    Vankelecom, Ivo F. J.
    JOURNAL OF MEMBRANE SCIENCE, 2011, 380 (1-2) : 55 - 62
  • [38] Facilitated transport membranes for CO2 separation and capture
    Tong, Zi
    Ho, W. S. Winston
    SEPARATION SCIENCE AND TECHNOLOGY, 2017, 52 (02) : 156 - 167
  • [39] Special Issue: Membranes and CO2 Separation Preface
    Nunes, Suzana Pereira
    Aimar, Pierre
    JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) : 1 - 1
  • [40] Synthesis of passive polymeric membranes for CO2 separation
    Chatterjee, Sabornie
    Hong, Tao
    Mahurin, Shannon
    Mays, Jimmy
    Sokolov, Alexei
    Saito, Tomonori
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249