Spatio-Temporal Covariance Descriptors for Action and Gesture Recognition

被引:0
|
作者
Sanin, Andres [1 ]
Sanderson, Conrad
Harandi, Mehrtash T.
Lovell, Brian C.
机构
[1] NICTA, POB 6020, St Lucia, Qld 4067, Australia
来源
2013 IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION (WACV) | 2013年
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new action and gesture recognition method based on spatio-temporal covariance descriptors and a weighted Riemannian locality preserving projection approach that takes into account the curved space formed by the descriptors. The weighted projection is then exploited during boosting to create a final multiclass classification algorithm that employs the most useful spatio-temporal regions. We also show how the descriptors can be computed quickly through the use of integral video representations. Experiments on the UCF sport, CK+ facial expression and Cambridge hand gesture datasets indicate superior performance of the proposed method compared to several recent state-of-the-art techniques. The proposed method is robust and does not require additional processing of the videos, such as foreground detection, interest-point detection or tracking.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [31] Projection transform on spatio-temporal context for action recognition
    Xu, Wanru
    Miao, Zhenjiang
    Zhang, Qiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (18) : 7711 - 7728
  • [32] SKELETON ACTION RECOGNITION BASED ON SPATIO-TEMPORAL FEATURES
    Huang, Qian
    Xie, Mengting
    Li, Xing
    Wang, Shuaichen
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3284 - 3288
  • [33] Exploiting spatio-temporal knowledge for video action recognition
    Zhang, Huigang
    Wang, Liuan
    Sun, Jun
    IET COMPUTER VISION, 2023, 17 (02) : 222 - 230
  • [34] ACTION RECOGNITION USING SPATIO-TEMPORAL DIFFERENTIAL MOTION
    Yadav, Gaurav Kumar
    Sethi, Amit
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3415 - 3419
  • [35] Spatio-temporal Semantic Features for Human Action Recognition
    Liu, Jia
    Wang, Xiaonian
    Li, Tianyu
    Yang, Jie
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2012, 6 (10): : 2632 - 2649
  • [36] Interpretable Spatio-temporal Attention for Video Action Recognition
    Meng, Lili
    Zhao, Bo
    Chang, Bo
    Huang, Gao
    Sun, Wei
    Tung, Frederich
    Sigal, Leonid
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1513 - 1522
  • [37] Spatio-Temporal Laplacian Pyramid Coding for Action Recognition
    Shao, Ling
    Zhen, Xiantong
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (06) : 817 - 827
  • [38] Spatio-temporal shape and flow correlation for action recognition
    Ke, Yan
    Sukthankar, Rahul
    Hebert, Martial
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 3835 - +
  • [39] Spatio-Temporal Collaborative Module for Efficient Action Recognition
    Hao, Yanbin
    Wang, Shuo
    Tan, Yi
    He, Xiangnan
    Liu, Zhenguang
    Wang, Meng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7279 - 7291
  • [40] Spatio-Temporal Attention Networks for Action Recognition and Detection
    Li, Jun
    Liu, Xianglong
    Zhang, Wenxuan
    Zhang, Mingyuan
    Song, Jingkuan
    Sebe, Nicu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2990 - 3001