L10 FePtX-Y media for heat-assisted magnetic recording

被引:185
|
作者
Weller, Dieter [1 ]
Mosendz, Oleksandr [1 ]
Parker, Gregory [1 ]
Pisana, Simone [1 ]
Santos, Tiffany S. [1 ]
机构
[1] HGST, San Jose, CA 95135 USA
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2013年 / 210卷 / 07期
关键词
grain size; granular alloys; heat assisted magnetic recording; L1(0) FePt; texture; DISORDER-ORDER TRANSFORMATION; EXCHANGE SPRING MEDIA; GRANULAR THIN-FILMS; SM-CO FILMS; EPITAXIAL-GROWTH; GRAIN-SIZE; GLASS SUBSTRATE; HIGH COERCIVITY; AG; MICROSTRUCTURE;
D O I
10.1002/pssa.201329106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Highly chemically ordered L1(0) FePtX-Y nano-granular films with high perpendicular magnetic anisotropy are key media approaches for future heat-assisted magnetic recording (HAMR). They are sputtered at elevated temperature on glass disks coated with adhesion, heat sink, and texturing layers. Adding X=Ag reduces the required deposition temperature and X=Cu lowers the Curie temperature. Current seed layers are NiTa for adhesion and heat sink and well-oriented MgO (002) layers for highly textured FePtX(002) grains surrounded by Y=carbon and/or other segregants. Magnetic anisotropies larger than 4.5x10(7)ergcm(-3) and coercivities beyond 5Tesla have been achieved. The combination of thermal conductivity and Curie temperature determines the required laser power during recording. Key goals are to optimize media, heads, head-disk-spacing, and read-back channels to extend the areal density to 1.5-5Tbin(-2). [GRAPHICS] Head and media in heat-assisted magnetic recording(1). LD, laser diode; TFC, thermal fluctuation control; NFT, near field transducer. (1)Lidu Huang et al., HAMR Thermal Modeling Including Media Hot Spot, APMRC 2012. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1245 / 1260
页数:16
相关论文
共 50 条
  • [31] Simulation of Heat-Assisted Magnetic Recording Using Renormalized Media Cells
    Victora, R. H.
    Huang, Pin-Wei
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (02) : 751 - 757
  • [32] Micromagnetic Study of Media Noise Plateau in Heat-Assisted Magnetic Recording
    Hsu, Wei-Heng
    Victora, R. H.
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (02)
  • [33] Media design for three-dimensional heat-assisted magnetic recording
    Kobayashi T.
    Nakatani Y.
    Fujiwara Y.
    Journal of the Magnetics Society of Japan, 2020, 44 (05) : 122 - 128
  • [34] Heat-assisted magnetic recording - Micromagnetic modeling of recording media and areal density: A review
    Hsu, Wei-Heng
    Victora, R. H.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 563
  • [35] First-principles prediction of the morphology of L10 FePt nanoparticles supported on Mg(Ti)O for heat-assisted magnetic recording applications
    Hung, Shih-Hsuan
    McKenna, Keith
    PHYSICAL REVIEW MATERIALS, 2017, 1 (02):
  • [36] Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2
    Vogler, Christoph
    Abert, Claas
    Bruckner, Florian
    Suess, Dieter
    Praetorius, Dirk
    APPLIED PHYSICS LETTERS, 2016, 108 (10)
  • [37] Thermal Erasure in Heat-Assisted Magnetic Recording
    Ghoreyshi, Ali
    Saunders, Douglas A.
    Rea, Chris J.
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (03)
  • [38] Materials for heat-assisted magnetic recording heads
    Michael C. Kautzky
    Martin G. Blaber
    MRS Bulletin, 2018, 43 : 100 - 105
  • [39] Materials for heat-assisted magnetic recording heads
    Kautzky, Michael C.
    Blaber, Martin G.
    MRS BULLETIN, 2018, 43 (02) : 100 - 105
  • [40] Anisotropic Heatsinks for Heat-Assisted Magnetic Recording
    Jubert, Pierre-Olivier
    Santos, Tiffany
    Le, Thanh
    Ozdol, Burak
    Papusoi, Cristian
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (02)