L10 FePtX-Y media for heat-assisted magnetic recording

被引:185
|
作者
Weller, Dieter [1 ]
Mosendz, Oleksandr [1 ]
Parker, Gregory [1 ]
Pisana, Simone [1 ]
Santos, Tiffany S. [1 ]
机构
[1] HGST, San Jose, CA 95135 USA
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2013年 / 210卷 / 07期
关键词
grain size; granular alloys; heat assisted magnetic recording; L1(0) FePt; texture; DISORDER-ORDER TRANSFORMATION; EXCHANGE SPRING MEDIA; GRANULAR THIN-FILMS; SM-CO FILMS; EPITAXIAL-GROWTH; GRAIN-SIZE; GLASS SUBSTRATE; HIGH COERCIVITY; AG; MICROSTRUCTURE;
D O I
10.1002/pssa.201329106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Highly chemically ordered L1(0) FePtX-Y nano-granular films with high perpendicular magnetic anisotropy are key media approaches for future heat-assisted magnetic recording (HAMR). They are sputtered at elevated temperature on glass disks coated with adhesion, heat sink, and texturing layers. Adding X=Ag reduces the required deposition temperature and X=Cu lowers the Curie temperature. Current seed layers are NiTa for adhesion and heat sink and well-oriented MgO (002) layers for highly textured FePtX(002) grains surrounded by Y=carbon and/or other segregants. Magnetic anisotropies larger than 4.5x10(7)ergcm(-3) and coercivities beyond 5Tesla have been achieved. The combination of thermal conductivity and Curie temperature determines the required laser power during recording. Key goals are to optimize media, heads, head-disk-spacing, and read-back channels to extend the areal density to 1.5-5Tbin(-2). [GRAPHICS] Head and media in heat-assisted magnetic recording(1). LD, laser diode; TFC, thermal fluctuation control; NFT, near field transducer. (1)Lidu Huang et al., HAMR Thermal Modeling Including Media Hot Spot, APMRC 2012. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1245 / 1260
页数:16
相关论文
共 50 条
  • [1] Areal density limitation in bit-patterned, heat-assisted magnetic recording using FePtX media
    McDaniel, Terry W.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (09)
  • [2] Heat-assisted magnetic recording media materials
    Hono, K.
    Takahashi, Y. K.
    Ju, Ganping
    Thiele, Jan-Ulrich
    Ajan, Antony
    Yang, XiaoMin
    Ruiz, Ricardo
    Wan, Lei
    MRS BULLETIN, 2018, 43 (02) : 93 - 99
  • [3] Heat-assisted magnetic recording media materials
    K. Hono
    Y. K. Takahashi
    Ganping Ju
    Jan-Ulrich Thiele
    Antony Ajan
    XiaoMin Yang
    Ricardo Ruiz
    Lei Wan
    MRS Bulletin, 2018, 43 : 93 - 99
  • [4] Lubrication for heat-assisted magnetic recording media
    Zhang, J.
    Ji, R.
    Xu, J. W.
    Ng, J. K. P.
    Xu, B. X.
    Hu, S. B.
    Yuan, H. X.
    Piramanayagam, S. N.
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (10) : 2546 - 2548
  • [5] L10-Ordered FePt-Based Perpendicular Magnetic Recording Media for Heat-Assisted Magnetic Recording
    Varaprasad, B. S. D. Ch. S.
    Chen, M.
    Takahashi, Y. K.
    Hono, K.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (02) : 718 - 722
  • [6] Magnetometry-based order parameter to probe the A1 to L10 transformation in FeCuPt for heat-assisted magnetic recording media.
    Gilbert, D. A.
    Liao, J.
    Wang, L.
    Lau, J. W.
    Klemmer, T. J.
    Thiele, J.
    Lai, C.
    Liu, K.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [7] Heat-assisted magnetic recording
    Rottmayer, Robert E.
    Batra, Sharat
    Buechel, Dorothea
    Challener, William A.
    Hohlfeld, Julius
    Kubota, Yukiko
    Li, Lei
    Lu, Bin
    Mihalcea, Christophe
    Mountfield, Keith
    Pelhos, Kalman
    Peng, Chubing
    Rausch, Tim
    Seigler, Michael A.
    Weller, Dieter
    Yang, XiaoMin
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (10) : 2417 - 2421
  • [8] Heat-assisted magnetic recording
    Gavrila, H.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2008, 10 (07): : 1796 - 1804
  • [9] Heat-assisted magnetic recording
    Pan, Liang
    Bogy, David B.
    NATURE PHOTONICS, 2009, 3 (04) : 186 - 187
  • [10] Heat-assisted magnetic recording
    Liang Pan
    David B. Bogy
    Nature Photonics, 2009, 3 : 189 - 190