Fabrication and growth mechanism of zinc blende and wurtzite CdTe nanowire arrays with different photoelectric properties

被引:18
|
作者
Luo, Bingwei [1 ]
Deng, Yuan [1 ]
Wang, Yao [1 ]
Tan, Ming [1 ]
Cao, Lili [1 ]
Zhu, Wei [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing Key Lab Special Funct Mat & Films, Beijing 100191, Peoples R China
来源
CRYSTENGCOMM | 2012年 / 14卷 / 23期
基金
中国国家自然科学基金;
关键词
III-V NANOWIRES; INDIUM-PHOSPHIDE NANOWIRES; FILM SOLAR-CELLS; SPECTROSCOPY;
D O I
10.1039/c2ce25752a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Large-scale, well-aligned CdTe nanowire arrays with different crystallographic phases have been prepared simply by regulating the basic growth parameters of the sputtering method. Pure zinc blende phase nanowire arrays that propagate in the (111) direction are achieved using a high growth temperature coupled with a low deposition rate. Conversely, wurtzite phase nanowire arrays with growth in the (002) direction have also been prepared by using a lower growth temperature and higher deposition rate. A Gibbs free energy nucleation model is use to explain the formation of these different crystal phases under the growth conditions employed. The differences in crystal structure are shown to exhibit different energy bands, defects and carrier transport properties. The wurtzite phase, with a narrower band gap (1.64 eV), is found to have better photoelectric properties than those of the zinc blende phase.
引用
收藏
页码:7922 / 7928
页数:7
相关论文
共 50 条
  • [41] Growth mechanism and magnetic properties of Co nanowire arrays by AC electrodeposition
    Zhang, Huimin
    Jia, Weiying
    Sun, Huiyuan
    Guo, Licong
    Sun, Jinfeng
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 468 : 188 - 192
  • [42] Facile fabrication and formation mechanism of aluminum nanowire arrays
    Nesbitt, Nathan T.
    Burns, Michael J.
    Naughton, Michael J.
    NANOTECHNOLOGY, 2020, 31 (09)
  • [43] Concurrent Zinc-Blende and Wurtzite Film Formation by Selection of Confined Growth Planes
    Staudinger, Philipp
    Mauthe, Svenja
    Moselund, Kirsten E.
    Schmid, Heinz
    NANO LETTERS, 2018, 18 (12) : 7856 - 7862
  • [44] Versatile self-catalyzed growth of freestanding zinc blende/wurtzite InP nanowires on an aerographite substrate for single-nanowire light detection
    Jin, Irina
    Strobel, Julian
    Schuermann, Ulrich
    Ciobanu, Vladimir
    Ursaki, Veaceslav
    Gorceac, Leonid
    Cinic, Boris
    Himcinschi, Cameliu
    Adelung, Rainer
    Kienle, Lorenz
    Tiginyanu, Ion
    MRS BULLETIN, 2023, 48 (09) : 881 - 889
  • [45] Comparison of wurtzite and zinc-blende GaAs surfaces as possible nanowire side walls: DFT stability calculations
    Jenichen, Arndt
    Engler, Cornelia
    Rauschenbach, Bernd
    SURFACE SCIENCE, 2013, 613 : 74 - 79
  • [46] The fabrication and photoelectric properties of the nanopillar arrays for solar cell
    Liu, Jing
    Liao, Yuanxun
    Wang, Bo
    Yi, Futing
    FRONTIER OF NANOSCIENCE AND TECHNOLOGY, 2011, 694 : 375 - 379
  • [47] Versatile self-catalyzed growth of freestanding zinc blende/wurtzite InP nanowires on an aerographite substrate for single-nanowire light detection
    Irina Jin
    Julian Strobel
    Ulrich Schürmann
    Vladimir Ciobanu
    Veaceslav Ursaki
    Leonid Gorceac
    Boris Cinic
    Cameliu Himcinschi
    Rainer Adelung
    Lorenz Kienle
    Ion Tiginyanu
    MRS Bulletin, 2023, 48 : 881 - 889
  • [48] As vacancies, Ga antisites, and Au impurities in zinc blende and wurtzite GaAs nanowire segments from first principles
    Du, Yaojun A.
    Sakong, Sung
    Kratzer, Peter
    PHYSICAL REVIEW B, 2013, 87 (07)
  • [49] First principles study of wurtzite and zinc blende GaN: a comparison of the electronic and optical properties
    Li, ST
    Ouyang, CY
    PHYSICS LETTERS A, 2005, 336 (2-3) : 145 - 151
  • [50] Influence of Pressure on the Mechanical and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals
    Qin, Hongbo
    Kuang, Tianfeng
    Luan, Xinghe
    Li, Wangyun
    Xiao, Jing
    Zhang, Ping
    Yang, Daoguo
    Zhang, Guoqi
    CRYSTALS, 2018, 8 (11)