Transport Inequalities on Euclidean Spaces for Non-Euclidean Metrics

被引:4
|
作者
Bobkov, Sergey G. [1 ]
Ledoux, Michel [2 ,3 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Toulouse Paul Sabatier, Inst Math Toulouse, F-31062 Toulouse, France
[3] Inst Univ France, Paris, France
关键词
Transport distances; Fourier analytic inequalities; non-Euclidean metrics; DISTANCES; BOUNDS;
D O I
10.1007/s00041-020-09766-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explore upper bounds on Kantorovich transport distances between probability measures on the Euclidean spaces in terms of their Fourier-Stieltjes transforms, with focus on non-Euclidean metrics. The results are illustrated on empirical measures in the optimal matching problem on the real line.
引用
收藏
页数:27
相关论文
共 50 条