Transport Inequalities on Euclidean Spaces for Non-Euclidean Metrics

被引:4
|
作者
Bobkov, Sergey G. [1 ]
Ledoux, Michel [2 ,3 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Toulouse Paul Sabatier, Inst Math Toulouse, F-31062 Toulouse, France
[3] Inst Univ France, Paris, France
关键词
Transport distances; Fourier analytic inequalities; non-Euclidean metrics; DISTANCES; BOUNDS;
D O I
10.1007/s00041-020-09766-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explore upper bounds on Kantorovich transport distances between probability measures on the Euclidean spaces in terms of their Fourier-Stieltjes transforms, with focus on non-Euclidean metrics. The results are illustrated on empirical measures in the optimal matching problem on the real line.
引用
下载
收藏
页数:27
相关论文
共 50 条
  • [1] Correction: Transport Inequalities on Euclidean Spaces for Non-Euclidean Metrics
    Sergey G. Bobkov
    Michel Ledoux
    Journal of Fourier Analysis and Applications, 2024, 30 (5)
  • [2] On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces
    Ren, Wei
    Miche, Yoan
    Oliver, Ian
    Holtmanns, Silke
    Bjork, Kaj-Mikael
    Lendasse, Amaury
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2017, 2017, 10410 : 3 - 13
  • [3] Windows into non-Euclidean spaces
    Oxburgh, Stephen
    White, Chris D.
    Antoniou, Georgios
    Mertens, Lena
    Mullen, Christopher
    Ramsay, Jennifer
    McCall, Duncan
    Courtial, Johannes
    NOVEL OPTICAL SYSTEMS DESIGN AND OPTIMIZATION XVII, 2014, 9193
  • [4] Deformable model with non-euclidean metrics
    Taton, B
    Lachaud, JO
    COMPUTER VISION - ECCV 2002 PT III, 2002, 2352 : 438 - 452
  • [5] Quasinilpotent operators and non-Euclidean metrics
    Liang, Yu-Xia
    Yang, Rongwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 939 - 958
  • [6] HYPER-COMPLEXES OF STRAIGHTS IN EUCLIDEAN AND NON-EUCLIDEAN SPACES
    ROZENFELD, BA
    ZATSEPINA, OV
    STEGANTSEVA, PG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1990, (03): : 57 - 66
  • [7] Shooting randomly against a line in Euclidean and non-Euclidean spaces
    Orsingher, Enzo
    Toaldo, Bruno
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (01) : 16 - 45
  • [8] LP ESTIMATES FOR RADON TRANSFORMS IN EUCLIDEAN AND NON-EUCLIDEAN SPACES
    STRICHARTZ, RS
    DUKE MATHEMATICAL JOURNAL, 1981, 48 (04) : 699 - 727
  • [9] Neural networks in non-Euclidean spaces
    Duch, W
    Adamczak, R
    Diercksen, GHF
    NEURAL PROCESSING LETTERS, 1999, 10 (03) : 201 - 210
  • [10] Scaling and testing for non-Euclidean spaces
    Spencer-Smith, J
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 2000, : 1057 - 1057