Least-squares solutions of inverse problem for Hermitian generalized Hamiltonian matrices

被引:7
|
作者
Zhang, ZZ [1 ]
Hu, XY
Zhang, L
机构
[1] Hunan City Univ, Dept Math, Yiyang, Peoples R China
[2] Cent S Univ, Sch Math Sci, Changsha, Peoples R China
[3] Hunan Univ, Fac Math & Econometr, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
ceneralized Hamiltonian matrices; Hermitian generalized Hamiltonian matrices; optimal approximation; least-square solution;
D O I
10.1016/S0893-9659(04)90067-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider least-square solutions of inverse problem for Hermitian generalized Hamiltonian matrices and their optimal approximation. We obtain a general expression of the least-square solution by using the singular value decomposition method. For any n x n complex matrix, we derive the representation of its unique optimal approximation in the least-square solutions set. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 50 条