INTERPOLATING MULTI-FIBER MODELS BY GAUSSIAN MIXTURE SIMPLIFICATION

被引:0
|
作者
Taquet, Maxime [1 ,2 ]
Scherrer, Benoit [1 ]
Benjamin, Christopher [1 ]
Prabhu, Sanjay [1 ]
Macq, Benoit [2 ]
Warfield, Simon K. [1 ]
机构
[1] Harvard Univ, Sch Med, Computat Radiol Lab, Boston, MA 02115 USA
[2] Catholic Univ Louvain, ICTEAM Inst, Louvain, Belgium
关键词
Multi-Fiber Models; Interpolation; Tractography; Spatial Normalization; Diffusion Tensor Imaging;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-fiber models have been introduced to leverage the accuracy of the diffusion representation in crossing fiber areas. The improved accuracy may, however, be impaired by poor processing of the multi-fiber models. In particular, interpolating multi-fiber models proves challenging, while it is a pervasive and recurrent task in many processes. The error accumulated from iterating a poor interpolation may yield significantly corrupted global results. In this paper, we propose an interpolation scheme based on gaussian mixture simplification and demonstrate its benefits over a heuristic approach in terms of spatial normalization and tractography results.
引用
收藏
页码:928 / 931
页数:4
相关论文
共 50 条
  • [31] Gaussian Mixture Models in R
    Chassagnol, Bastien
    Bichat, Antoine
    Boudjeniba, Cheima
    Wuillemin, Pierre-Henri
    Guedj, Mickael
    Gohel, David
    Nuel, Gregory
    Becht, Etienne
    R JOURNAL, 2023, 15 (02): : 56 - 76
  • [32] Deep Gaussian mixture models
    Cinzia Viroli
    Geoffrey J. McLachlan
    Statistics and Computing, 2019, 29 : 43 - 51
  • [33] Fuzzy Gaussian Mixture Models
    Ju, Zhaojie
    Liu, Honghai
    PATTERN RECOGNITION, 2012, 45 (03) : 1146 - 1158
  • [34] Parsimonious Gaussian mixture models
    McNicholas, Paul David
    Murphy, Thomas Brendan
    STATISTICS AND COMPUTING, 2008, 18 (03) : 285 - 296
  • [35] Multi-Fiber Cylindrical Ferrule for Remote Rotary Optical Fiber Switching
    Fukai, Chisato
    Abe, Yoshiteru
    Katayama, Kazunori
    2022 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2022,
  • [36] Combining Gaussian mixture models
    Lee, HJ
    Cho, S
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2004, PROCEEDINGS, 2004, 3177 : 666 - 671
  • [37] Deep Gaussian mixture models
    Viroli, Cinzia
    McLachlan, Geoffrey J.
    STATISTICS AND COMPUTING, 2019, 29 (01) : 43 - 51
  • [38] Parsimonious Gaussian mixture models
    Paul David McNicholas
    Thomas Brendan Murphy
    Statistics and Computing, 2008, 18 : 285 - 296
  • [39] Operational performance of OzPoz, the multi-fiber positioner on the VLT
    Gillingham, P
    Smoker, J
    Colless, M
    Kaufer, A
    GROUND-BASED INSTRUMENTATION FOR ASTRONOMY, PTS 1-3, 2004, 5492 : 643 - 650
  • [40] Echidna - a multi-fiber positioner for the Subaru prime focus
    Gillingham, P
    Miziarski, S
    Akiyama, M
    Klocke, V
    OPTICAL AND IR TELESCOPE INSTRUMENTATION AND DETECTORS, PTS 1 AND 2, 2000, 4008 : 1395 - 1403