High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion

被引:0
|
作者
Anandkumar, Animashree [1 ]
Tan, Vincent Y. F. [2 ]
Huang, Furong [1 ]
Willsky, Alan S. [3 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92697 USA
[2] Natl Univ Singapore, Data Min Dept, Inst Infocomm Res Singapore Elect & Comp Engn, Singapore, Singapore
[3] MIT, Lab Informat & Decis Syst, Stochast Syst Grp, Cambridge, MA 02139 USA
关键词
Gaussian graphical model selection; high-dimensional learning; local-separation property; walk-summability; necessary conditions for model selection; DISTRIBUTIONS; NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of high-dimensional Gaussian graphical model selection. We identify a set of graphs for which an efficient estimation algorithm exists, and this algorithm is based on thresholding of empirical conditional covariances. Under a set of transparent conditions, we establish structural consistency (or sparsistency) for the proposed algorithm, when the number of samples n = Omega (J(min)(-2) log p), where p is the number of variables and J(min) is the minimum (absolute) edge potential of the graphical model. The sufficient conditions for sparsistency are based on the notion of walk-summability of the model and the presence of sparse local vertex separators in the underlying graph. We also derive novel non-asymptotic necessary conditions on the number of samples required for sparsistency.
引用
收藏
页码:2293 / 2337
页数:45
相关论文
共 50 条
  • [1] GRAPHICAL LASSO FOR HIGH-DIMENSIONAL COMPLEX GAUSSIAN GRAPHICAL MODEL SELECTION
    Tugnait, Jitendra K.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2952 - 2956
  • [2] High-dimensional Gaussian model selection on a Gaussian design
    Verzelen, Nicolas
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (02): : 480 - 524
  • [3] A Model Selection Criterion for High-Dimensional Linear Regression
    Owrang, Arash
    Jansson, Magnus
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (13) : 3436 - 3446
  • [4] Block-Diagonal Covariance Selection for High-Dimensional Gaussian Graphical Models
    Devijver, Emilie
    Gallopin, Melina
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (521) : 306 - 314
  • [5] HIGH-DIMENSIONAL STRUCTURE ESTIMATION IN ISING MODELS: LOCAL SEPARATION CRITERION
    Anandkumar, Animashree
    Tan, Vincent Y. F.
    Huang, Furong
    Willsky, Alan S.
    [J]. ANNALS OF STATISTICS, 2012, 40 (03): : 1346 - 1375
  • [6] Compatible priors for model selection of high-dimensional Gaussian DAGs
    Peluso, Stefano
    Consonni, Guido
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 4110 - 4132
  • [7] High-Dimensional Gaussian Graphical Regression Models with Covariates
    Zhang, Jingfei
    Li, Yi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (543) : 2088 - 2100
  • [8] HIGH-DIMENSIONAL SEMIPARAMETRIC GAUSSIAN COPULA GRAPHICAL MODELS
    Liu, Han
    Han, Fang
    Yuan, Ming
    Lafferty, John
    Wasserman, Larry
    [J]. ANNALS OF STATISTICS, 2012, 40 (04): : 2293 - 2326
  • [9] Uniform inference in high-dimensional Gaussian graphical models
    Klaassen, S.
    Kueck, J.
    Spindler, M.
    Chernozhukov, V
    [J]. BIOMETRIKA, 2023, 110 (01) : 51 - 68
  • [10] Gaussian Graphical Model Estimation and Selection for High-Dimensional Incomplete Data Using Multiple Imputation and Horseshoe Estimators
    Zhang, Yunxi
    Kim, Soeun
    [J]. MATHEMATICS, 2024, 12 (12)