HIGH-DIMENSIONAL SEMIPARAMETRIC GAUSSIAN COPULA GRAPHICAL MODELS

被引:312
|
作者
Liu, Han [1 ]
Han, Fang [2 ]
Yuan, Ming [3 ]
Lafferty, John [4 ]
Wasserman, Larry [5 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
[3] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[4] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[5] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
来源
ANNALS OF STATISTICS | 2012年 / 40卷 / 04期
基金
美国国家科学基金会;
关键词
High-dimensional statistics; undirected graphical models; Gaussian copula; nonparanormal graphical models; robust statistics; minimax optimality; biological regulatory networks; SELECTION; MAXIMUM;
D O I
10.1214/12-AOS1037
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a semiparametric approach called the nonparanormal SKEPTIC for efficiently and robustly estimating high-dimensional undirected graphical models. To achieve modeling flexibility, we consider the nonparanormal graphical models proposed by Liu, Lafferty and Wasserman [J. Mach. Learn. Res. 10 (2009) 2295-2328]. To achieve estimation robustness, we exploit nonparametric rank-based correlation coefficient estimators, including Spearman's rho and Kendall's tau. We prove that the nonparanormal SKEPTIC achieves the optimal parametric rates of convergence for both graph recovery and parameter estimation. This result suggests that the nonparanormal graphical models can be used as a safe replacement of the popular Gaussian graphical models, even when the data are truly Gaussian. Besides theoretical analysis, we also conduct thorough numerical simulations to compare the graph recovery performance of different estimators under both ideal and noisy settings. The proposed methods are then applied on a large-scale genomic data set to illustrate their empirical usefulness. The R package huge implementing the proposed methods is available on the Comprehensive R Archive Network: http://cran.r-project.org/.
引用
收藏
页码:2293 / 2326
页数:34
相关论文
共 50 条
  • [1] Joint estimation of multiple high-dimensional Gaussian copula graphical models
    He, Yong
    Zhang, Xinsheng
    Ji, Jiadong
    Liu, Bin
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2017, 59 (03) : 289 - 310
  • [2] Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model
    Fan, Yanqin
    Han, Fang
    Park, Hyeonseok
    JOURNAL OF ECONOMETRICS, 2023, 237 (01)
  • [3] High-Dimensional Gaussian Graphical Regression Models with Covariates
    Zhang, Jingfei
    Li, Yi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (543) : 2088 - 2100
  • [4] Uniform inference in high-dimensional Gaussian graphical models
    Klaassen, S.
    Kueck, J.
    Spindler, M.
    Chernozhukov, V
    BIOMETRIKA, 2023, 110 (01) : 51 - 68
  • [5] High-dimensional Covariance Estimation Based On Gaussian Graphical Models
    Zhou, Shuheng
    Ruetimann, Philipp
    Xu, Min
    Buehlmann, Peter
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 2975 - 3026
  • [6] High-dimensional semiparametric bigraphical models
    Ning, Yang
    Liu, Han
    BIOMETRIKA, 2013, 100 (03) : 655 - 670
  • [7] Quantifying Nonlocal Informativeness in High-Dimensional, Loopy Gaussian Graphical Models
    Levine, Daniel
    How, Jonathan P.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 487 - 495
  • [8] High-dimensional Gaussian graphical models on network-linked data
    Li, Tianxi
    Qian, Cheng
    Levina, Elizaveta
    Zhu, Ji
    1600, Microtome Publishing (21):
  • [9] Fast and Separable Estimation in High-Dimensional Tensor Gaussian Graphical Models
    Min, Keqian
    Mai, Qing
    Zhang, Xin
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (01) : 294 - 300
  • [10] High-dimensional joint estimation of multiple directed Gaussian graphical models
    Wang, Yuhao
    Segarra, Santiago
    Uhler, Caroline
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 2439 - 2483