Mackey-Glass model of hematopoiesis with non-monotone feedback: Stability, oscillation and control

被引:41
|
作者
Berezansky, Leonid [1 ]
Braverman, Elena [2 ]
Idels, Lev [3 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Univ Calgary, Dept Math & Stats, Calgary, AB T2N 1N4, Canada
[3] VIU, Dept Math, Nanaimo, BC V9S 5J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Mackey-Glass equation; Non-monotone feedback; Control and stabilization; Local and global asymptotic stability; Non-autonomous models; Permanence; Non-oscillation; Blood cell production; DELAY-DIFFERENTIAL EQUATIONS; POSITIVE PERIODIC-SOLUTIONS; GLOBAL ATTRACTIVITY; DEPENDENT STABILITY; EXISTENCE THEORY; CHAOTIC SYSTEMS; POPULATION; ABSOLUTE; DYNAMICS;
D O I
10.1016/j.amc.2012.12.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the blood cell production model with a unimodal (hump) feedback function dy/dt = -gamma y(t) + beta theta(n)y(t - tau)/theta(n) + y(n) (t -tau ) we review the known results and investigate generalizations of this equation. Permanence, oscillation and stability of the positive equilibrium are studied for non- autonomous equations, including equations with a distributed delay. In addition, a linear control is introduced, and possibilities to stabilize an otherwise unstable positive equilibrium are explored. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:6268 / 6283
页数:16
相关论文
共 50 条
  • [41] Monotone traveling waves of a population model with non-monotone terms
    Yu, Zhi-Xian
    Zhang, Ziheng
    Xia, Jing
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 7973 - 7981
  • [42] Besicovitch almost periodic solutions for a stochastic generalized Mackey-Glass hematopoietic model
    Huang, Xianying
    Li, Yongkun
    AIMS MATHEMATICS, 2024, 9 (10): : 26602 - 26630
  • [43] Non-monotone metric on the quantum parametric model
    Jun Suzuki
    The European Physical Journal Plus, 136
  • [44] Iterative oscillation tests for difference equations with several non-monotone arguments
    Braverman, E.
    Chatzarakis, G. E.
    Stavroulakis, I. P.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (09) : 854 - 874
  • [45] Iterative oscillation tests for differential equations with several non-monotone arguments
    Braverman, Elena
    Chatzarakis, George E.
    Stavroulakis, Ioannis P.
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [46] OSCILLATION TESTS FOR DIFFERENCE EQUATIONS WITH SEVERAL NON-MONOTONE DEVIATING ARGUMENTS
    Chatzarakis, George E.
    Dmitrovic, Lana Horvat
    Pasic, Mervan
    MATHEMATICA SLOVACA, 2018, 68 (05) : 1083 - 1096
  • [47] Non-monotone metric on the quantum parametric model
    Suzuki, Jun
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [48] An oscillation criterion for delay differential equations with several non-monotone arguments
    Akca, H.
    Chatzarakis, G. E.
    Stavroulakis, I. P.
    APPLIED MATHEMATICS LETTERS, 2016, 59 : 101 - 108
  • [49] Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays
    Attia, Emad R.
    El-Morshedy, Hassan A.
    Stavroulakis, Ioannis P.
    SYMMETRY-BASEL, 2020, 12 (05):
  • [50] Iterative oscillation tests for differential equations with several non-monotone arguments
    Elena Braverman
    George E Chatzarakis
    Ioannis P Stavroulakis
    Advances in Difference Equations, 2016