Semantic Monte-Carlo Localization in Changing Environments using RGB-D Cameras

被引:0
|
作者
Himstedt, Marian [1 ]
Maehle, Erik [1 ]
机构
[1] Univ Lubeck, Inst Comp Engn, Lubeck, Germany
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The localization with respect to a prior map is a fundamental requirement for mobile robots. The commonly used adaptive monte carlo localization (AMCL) can be found on most of the mobile robots ranging from small cleaning robots to large AGVs. While achieving accurate pose estimates in static environments, this algorithm tends to fail in the presence of significant changes. Recently published extensions and alternatives to AMCL observe the environment over longer times while building complex spatio-temporal models. Our approach, in contrast, utilizes object recognition and prior semantic maps to enable robust localization. It exploits the fact that putative changes in the environment can be predicted based on prior semantic knowledge. Our system is experimentally evaluated in a warehouse environment being subject to frequent changes. This emphasizes the importance of our algorithm for challenging industrial applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Online semantic mapping of logistic environments using RGB-D cameras
    Himstedt, Marian
    Maehle, Erik
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (04): : 1 - 13
  • [2] Efficient Scene Simulation for Robust Monte Carlo Localization using an RGB-D Camera
    Fallon, Maurice F.
    Johannsson, Hordur
    Leonard, John J.
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 1663 - 1670
  • [3] An Asynchronous RGB-D Sensor Fusion Framework Using Monte-Carlo Methods for Hand Tracking on a Mobile Robot in Crowded Environments
    McKeague, Stephen
    Liu, Jindong
    Yang, Guang-Zhong
    SOCIAL ROBOTICS, ICSR 2013, 2013, 8239 : 491 - 500
  • [4] 3D Registration in Dark Environments Using RGB-D Cameras
    Yousif, Khalid
    Bab-Hadiashar, Alireza
    Hoseinnezhad, Reza
    2013 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES & APPLICATIONS (DICTA), 2013, : 51 - 58
  • [5] RGB-D Image-based Pose Estimation with Monte Carlo Localization
    Li, Ming
    Qin, Hao
    Huang, May
    Cao, Jian
    Zhang, Xing
    2017 3RD INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2017, : 109 - 114
  • [6] Improving RGB-D SLAM in dynamic environments using semantic aided segmentation
    Kenye, Lhilo
    Kala, Rahul
    ROBOTICA, 2022, 40 (06) : 2065 - 2090
  • [7] Adaptive Visual Odometry Using RGB-D Cameras
    Fabian, Joshua R.
    Clayton, Garrett M.
    2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2014, : 1533 - 1538
  • [8] Visual SLAM using Multiple RGB-D Cameras
    Yang, Shaowu
    Yi, Xiaodong
    Wang, Zhiyuan
    Wang, Yanzhen
    Yang, Xuejun
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 1389 - 1395
  • [9] VIRTUAL VIEW SYNTHESIS USING RGB-D CAMERAS
    Chien, Chun-Liang
    Lee, Tzu-Chin
    Hang, Hsueh-Ming
    2016 3DTV-CONFERENCE: THE TRUE VISION - CAPTURE, TRANSMISSION AND DISPLAY OF 3D VIDEO (3DTV-CON), 2016,
  • [10] Robust Texture Mapping Using RGB-D Cameras
    Oliveira, Miguel
    Lim, Gi-Hyun
    Madeira, Tiago
    Dias, Paulo
    Santos, Vitor
    SENSORS, 2021, 21 (09)