Norm of a linear combination of two operators on a Hilbert space

被引:0
|
作者
Nakazi, T
Yamamoto, T
机构
[1] Hokkaido Univ, Dept Math, Fac Sci, Sapporo, Hokkaido 0600810, Japan
[2] Hokkai Gakuen Univ, Dept Math, Sapporo, Hokkaido 0628605, Japan
关键词
D O I
10.1017/S0004972700020013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha, beta, gamma, delta be complex numbers such that gammadelta not equal 0. If A and B are bounded linear operators on the Hilbert space H such that gammaA + deltaB is right invertible then we study the operator norm of (alphaA + betaB) (gammaA + deltaB)(-1) using the angle 0 between two subspaces ran A and ran B or the angle psi = psi(A, B) between two operators A and B where cos psi(A, B) = sup{\<Af, Bf>\/(parallel toAfparallel to . parallel toBfparallel to); f is an element of H, Af not equal 0, Bf not equal 0}.
引用
收藏
页码:9 / 22
页数:14
相关论文
共 50 条
  • [31] INEQUALITIES INVOLVING BEREZIN NORM AND BEREZIN NUMBER OF HILBERT SPACE OPERATORS
    Nikzat, Eham
    Omidvar, Mohsen erfanian
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (04): : 1289 - 1301
  • [33] Further norm and numerical radius inequalities for sum of Hilbert space operators
    Afraz, Davood
    Lashkaripour, Ramatollah
    Bakherad, Mojtaba
    FILOMAT, 2024, 38 (09) : 3235 - 3242
  • [34] Upper bounds for the norm of the sum and Kronecker product of Hilbert space operators
    Sababheh, Mohammad
    Moradi, Hamid Reza
    Krnic, Mario
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (02): : 351 - 367
  • [35] New Estimates on Numerical Radius and Operator Norm of Hilbert Space Operators
    Hassani, Mahmoud
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    TOKYO JOURNAL OF MATHEMATICS, 2021, 44 (02) : 439 - 449
  • [36] On chaotic order of two operators on Hilbert space
    Lin, CS
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (04): : 701 - 712
  • [37] The structured norm of a Hilbert space operator with respect to a given algebra of operators
    Feintuch, A
    Markus, A
    OPERATOR THEORY AND INTERPOLATION, 2000, 115 : 163 - 183
  • [38] On a New Norm on the Space of Reproducing Kernel Hilbert Space Operators and Berezin Radius Inequalities
    Bhunia, P.
    Gurdal, M.
    Paul, K.
    Sen, A.
    Tapdigoglu, R.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (09) : 970 - 986
  • [39] REAL-LINEAR OPERATORS ON QUATERNIONIC HILBERT SPACE
    POWERS, NC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (01) : 1 - 8
  • [40] The commuting graph of bounded linear operators on a Hilbert space
    Ambrozie, C.
    Bracic, J.
    Kuzma, B.
    Mueller, V.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (04) : 1068 - 1087