Norm of a linear combination of two operators on a Hilbert space

被引:0
|
作者
Nakazi, T
Yamamoto, T
机构
[1] Hokkaido Univ, Dept Math, Fac Sci, Sapporo, Hokkaido 0600810, Japan
[2] Hokkai Gakuen Univ, Dept Math, Sapporo, Hokkaido 0628605, Japan
关键词
D O I
10.1017/S0004972700020013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha, beta, gamma, delta be complex numbers such that gammadelta not equal 0. If A and B are bounded linear operators on the Hilbert space H such that gammaA + deltaB is right invertible then we study the operator norm of (alphaA + betaB) (gammaA + deltaB)(-1) using the angle 0 between two subspaces ran A and ran B or the angle psi = psi(A, B) between two operators A and B where cos psi(A, B) = sup{\<Af, Bf>\/(parallel toAfparallel to . parallel toBfparallel to); f is an element of H, Af not equal 0, Bf not equal 0}.
引用
收藏
页码:9 / 22
页数:14
相关论文
共 50 条