A global partial likelihood estimation in the additive Cox proportional hazards model

被引:7
|
作者
Lin, Huazhen [1 ]
He, Ye [1 ]
Huang, Jian [2 ,3 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Stat, Ctr Stat Res, Chengdu, Peoples R China
[2] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
关键词
Additive Cox model; Asymptotical properties; Global partial likelihood; Semiparametric efficiency; LOCAL PARTIAL-LIKELIHOOD; EFFICIENT ESTIMATION; REGRESSION-MODEL;
D O I
10.1016/j.jspi.2015.08.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The additive Cox model has been considered by many authors. However, the existing methods are either inefficient or their asymptotical properties are not well developed. In this article, we propose a global partial likelihood method to estimate the additive Cox model. We show that the proposed estimator is consistent and asymptotically normal. We also show that the linear functions of the estimated nonparametric components achieve semiparametric efficiency bound. Simulation studies show that our proposed estimator has much less mean squared error than the existing methods. Finally, we apply the proposed approach to the "nursing home" data set (Morris et al. 1994). (C) 2015 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:71 / 87
页数:17
相关论文
共 50 条
  • [31] On penalized likelihood estimation for a non-proportional hazards regression model
    Devarajan, Karthik
    Ebrahirni, Nader
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (07) : 1703 - 1710
  • [32] Adjusting for bias introduced by instrumental variable estimation in the Cox proportional hazards model
    Martinez-Camblor, Pablo
    Mackenzie, Todd
    Staiger, Douglas O.
    Goodney, Philip P.
    O'Malley, A. James
    BIOSTATISTICS, 2019, 20 (01) : 80 - 96
  • [33] Penalized likelihood estimation of the proportional hazards model for survival data with interval censoring
    Ma, Jun
    Couturier, Dominique-Laurent
    Heritier, Stephane
    Marschner, Ian C.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2022, 18 (02): : 553 - 575
  • [34] Maximum likelihood estimation in a semiparametric logistic/proportional-hazards mixture model
    Fang, HB
    Li, G
    Sun, JG
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (01) : 59 - 75
  • [35] On generalized maximum likelihood estimation in the proportional hazards model with partially informative censoring
    Haimeng Zhang
    M. Bhaskara Rao
    Metrika, 2004, 59 : 125 - 136
  • [36] Sieve maximum likelihood estimation for the proportional hazards model under informative censoring
    Chen, Xuerong
    Hu, Tao
    Sun, Jianguo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 112 : 224 - 234
  • [37] On generalized maximum likelihood estimation in the proportional hazards model with partially informative censoring
    Zhang, HM
    Rao, MB
    METRIKA, 2004, 59 (02) : 125 - 136
  • [38] Survival analysis: Cox proportional hazards model
    Jeyaseelan, L
    Walter, SD
    Shankar, V
    John, GT
    NATIONAL MEDICAL JOURNAL OF INDIA, 1999, 12 (05): : 230 - 233
  • [39] THE ROBUST INFERENCE FOR THE COX PROPORTIONAL HAZARDS MODEL
    LIN, DY
    WEI, LJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) : 1074 - 1078
  • [40] Gradient lasso for Cox proportional hazards model
    Sohn, Insuk
    Kim, Jinseog
    Jung, Sin-Ho
    Park, Changyi
    BIOINFORMATICS, 2009, 25 (14) : 1775 - 1781