Two-Dimensional Gold Quantum Dots with Tunable Bandgaps

被引:31
|
作者
Bhandari, Shiva [1 ]
Hao, Boyi [1 ]
Waters, Kevin [1 ]
Lee, Chee Huei [1 ]
Idrobo, Juan-Carlos [2 ]
Zhang, Dongyan [1 ]
Pandey, Ravindra [1 ]
Yap, Yoke Khin [1 ]
机构
[1] Michigan Technol Univ, Dept Phys, 1400 Townsend Dr, Houghton, MI 49931 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN USA
关键词
two-dimensional materials; nanotubes; gold clusters; gold quantum dots; boron nitride nanotubes; pulsed-laser deposition; BORON-NITRIDE NANOTUBES; CATALYTIC-ACTIVITY; CLUSTERS; NANOPARTICLES; NANOMATERIALS; PLANAR; GROWTH; SIZE;
D O I
10.1021/acsnano.8b09559
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metallic gold nanoparticles (Au NPs) with multilayer Au atoms are useful for plasmonic, chemical, medical, and metamaterial application. In this article, we report the opening of the bandgap in substrate-supported two-dimensional (2D) gold quantum dots (Au QDs) with monolayer Au atoms. Calculations based on density functional theory suggest that 2D Au QDs are energetically favorable over 3D Au clusters when coated on hexagonal boron nitride (BN) surfaces. Experimentally, we find that BN nanotubes (BNNTs) can be used to stabilize 2D Au QDs on their cylindrical surfaces as well as Au atoms, dimers, and trimers. The electrically insulating and optically transparent BNNTs enable the detection of the optical bandgaps of the Au QDs in the visible spectrum. further demonstrate that the size and shapes of 2D Au QDs could be atomically trimmed and restructured by electron beam irradiation. Our results may stimulate further exploration of energetically stable, metal-based 2D semiconductors, with properties tunable atom by atom.
引用
收藏
页码:4347 / 4353
页数:7
相关论文
共 50 条
  • [41] Development of Perovskite Quantum Dots for Two-Dimensional Temperature Sensors
    Zhu, Yanshen
    Buitenhuis, Johan
    Foerster, Beate
    Vetrano, Maria Rosaria
    Koos, Erin
    ACS APPLIED NANO MATERIALS, 2023, 6 (06) : 4661 - 4671
  • [42] Level structure of InAs quantum dots in two-dimensional assemblies
    Steiner, Dov
    Aharoni, Assaf
    Banin, Uri
    Millo, Oded
    NANO LETTERS, 2006, 6 (10) : 2201 - 2205
  • [43] Tunable refraction in a two-dimensional quantum-state metamaterial
    Everitt, M. J.
    Samson, J. H.
    Savel'ev, S. E.
    Wilson, R.
    Zagoskin, A. M.
    Spiller, T. P.
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [44] Creation of tunable absolute bandgaps in a two-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal
    Liu, Chen-Yang
    PHYSICS LETTERS A, 2008, 372 (31) : 5198 - 5202
  • [45] Magnetic surface plasmon-induced tunable photonic bandgaps in two-dimensional magnetic photonic crystals
    Jian Shen
    Shiyang Liu
    Rong Cao
    Xin Fan
    Junjie Du
    Huaiwu Zhang
    Zhifang Lin
    Siu-Tat Chui
    John Q. Xiao
    Applied Physics A, 2011, 105 : 789 - 793
  • [46] Magnetic surface plasmon-induced tunable photonic bandgaps in two-dimensional magnetic photonic crystals
    Shen, Jian
    Liu, Shiyang
    Cao, Rong
    Fan, Xin
    Du, Junjie
    Zhang, Huaiwu
    Lin, Zhifang
    Chui, Siu-Tat
    Xiao, John Q.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 105 (04): : 789 - 793
  • [47] Scaling of entanglement at a quantum phase transition for a two-dimensional array of quantum dots
    Wang, JX
    Kais, S
    PHYSICAL REVIEW A, 2004, 70 (02): : 022301 - 1
  • [48] Laser driven impurity states in two-dimensional quantum dots and quantum rings
    Laroze, D.
    Barseghyan, M.
    Radu, A.
    Kirakosyan, A. A.
    PHYSICA B-CONDENSED MATTER, 2016, 501 : 1 - 4
  • [49] Quantum Hall ferromagnet in a two-dimensional electron gas coupled with quantum dots
    Gusev, G. M.
    Sotomayor, N. M.
    Seabra, A. C.
    Quivy, A. A.
    Lamas, T. E.
    Portal, J. C.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2): : 504 - 507
  • [50] Transition from two-dimensional to three-dimensional quantum confinement in semiconductor quantum wires/quantum dots
    Zhu, Q.
    Karlsson, K. F.
    Pelucchi, E.
    Kapon, E.
    NANO LETTERS, 2007, 7 (08) : 2227 - 2233