A Relation Between Binomial Coefficients and Fibonacci Numbers to the Higher Power

被引:0
|
作者
Che, Yuhong [1 ]
机构
[1] Weinan Normal Univ, Weinan 714000, Shaanxi, Peoples R China
关键词
Binomial coefficient; Fibonacci numbers; Convolution;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we calculatate high power of Fibonacci numbers by elementary mathematical methods and prove an interesting identity between the binomial coefficients and the high power of Fibonacci numbers.
引用
收藏
页码:281 / 284
页数:4
相关论文
共 50 条
  • [31] FORMULAS FOR BINOMIAL SUMS INCLUDING POWERS OF FIBONACCI AND LUCAS NUMBERS
    Kilic, Emrah
    Akkus, Ilker
    Omur, Nese
    Ulutas, Yucel Turker
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (04): : 69 - 78
  • [32] PROPERTIES OF POLYNOMIALS HAVING FIBONACCI NUMBERS FOR COEFFICIENTS
    LEHMER, DH
    LEHMER, E
    FIBONACCI QUARTERLY, 1983, 21 (01): : 62 - 64
  • [33] More Congruences for Central Binomial Sums with Fibonacci and Lucas Numbers
    Tauraso, Roberto
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (08)
  • [34] Formulas for binomial sums including powers of fibonacci and lucas numbers
    Kilic, Emrah
    Akkus, Ilker
    Omur, Nese
    Ulutas, Yucel Turker
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2015, 77 (04): : 69 - 78
  • [35] ON BINOMIAL DOUBLE SUMS WITH FIBONACCI AND LUCAS NUMBERS-I
    Kilic, Emrah
    Tasdemir, Funda
    ARS COMBINATORIA, 2019, 144 : 173 - 185
  • [36] Series with Central Binomial Coefficients,Catalan Numbers,and Harmonic Numbers
    Boyadzhiev, Khristo N.
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (01)
  • [37] RELATIONSHIP AMONG BINOMIAL COEFFICIENTS, BERNOULLI NUMBERS AND STIRLING NUMBERS
    Kim, Dohan
    Lee, Eun Gu
    ARS COMBINATORIA, 2016, 125 : 331 - 337
  • [38] The coefficients of a Fibonacci power series
    Ardila, F
    FIBONACCI QUARTERLY, 2004, 42 (03): : 202 - 204
  • [39] ON BINOMIAL DOUBLE SUMS WITH FIBONACCI AND LUCAS NUMBERS-II
    Kilic, Emrah
    Tasdemir, Funda
    ARS COMBINATORIA, 2019, 144 : 345 - 354
  • [40] A unified interpretation of the binomial coefficients, the stirling numbers, and the Gaussian coefficients
    Konvalina, J
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (10): : 901 - 910