Lower central series of free algebras in symmetric tensor categories

被引:17
|
作者
Bapat, Asilata [2 ]
Jordan, David [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Univ Chicago, Chicago, IL 60637 USA
关键词
Lower central series; Symmetric tensor categories; Schur functors;
D O I
10.1016/j.jalgebra.2012.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the lower central series of a free associative algebra, initiated by Feigin and Shoikhet (2007) [FS]. We generalize via Schur functors the constructions of the lower central series to any symmetric tensor category; specifically we compute the modified first quotient (B) over bar (1), and second and third quotients B-2, and B-3 of the series for a free algebra T(V) in any symmetric tensor category, generalizing the main results of Feigin and Shoikhet (2007) [FS] and Arbesfeld and Jordan (2010) [AJ]. In the case A(m/n) := T(C-m/n), we use these results to compute the explicit Hilbert series. Finally, we prove a result relating the lower central series to the corresponding filtration by two-sided associative ideals, confirming a conjecture from Etingof et al. (2009) [EKM], and another one from Arbesfeld and Jordan (2010) [AJ], as corollaries. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:299 / 311
页数:13
相关论文
共 50 条
  • [31] Braided Tensor Categories and Extensions of Vertex Operator Algebras
    Yi-Zhi Huang
    Alexander Kirillov
    James Lepowsky
    Communications in Mathematical Physics, 2015, 337 : 1143 - 1159
  • [32] Braided Tensor Categories Related to Bp Vertex Algebras
    Auger, Jean
    Creutzig, Thomas
    Kanade, Shashank
    Rupert, Matthew
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 219 - 260
  • [33] CENTRAL IDEMPOTENTS IN SYMMETRIC ALGEBRAS
    FOSSUM, TV
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 536 - &
  • [34] Spectra of tensor triangulated categories over category algebras
    Xu, Fei
    ARCHIV DER MATHEMATIK, 2014, 103 (03) : 235 - 253
  • [35] On the tensor product of bimodule categories over Hopf algebras
    Martín Mombelli
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2012, 82 : 173 - 192
  • [36] Haploid Algebras in C*-Tensor Categories and the Schellekens List
    Carpi, Sebastiano
    Gaudio, Tiziano
    Giorgetti, Luca
    Hillier, Robin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 169 - 212
  • [37] Spectra of tensor triangulated categories over category algebras
    Fei Xu
    Archiv der Mathematik, 2014, 103 : 235 - 253
  • [38] Braided Tensor Categories and Extensions of Vertex Operator Algebras
    Huang, Yi-Zhi
    Kirillov, Alexander, Jr.
    Lepowsky, James
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (03) : 1143 - 1159
  • [39] Algebras in tensor categories and coset conformal field theories
    Fröhlich, J
    Fuchs, J
    Runkel, I
    Schweigert, C
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2004, 52 (6-7): : 672 - 677
  • [40] On the tensor product of bimodule categories over Hopf algebras
    Mombelli, Martin
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2012, 82 (02): : 173 - 192