On a conjecture of Furusho over function fields

被引:11
|
作者
Chang, Chieh-Yu [1 ]
Mishiba, Yoshinori [2 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 30042, Taiwan
[2] Univ Ryukyus, Dept Math Sci, 1 Senbaru,Nishihara Cho, Nishihara, Okinawa 9030213, Japan
关键词
MULTIPLE ZETA-VALUES; DOUBLE SHUFFLE RELATIONS; ALGEBRAIC INDEPENDENCE; LINEAR INDEPENDENCE; MULTIZETA VALUES; TENSOR POWERS; GAMMA-VALUES; MOTIVES;
D O I
10.1007/s00222-020-00988-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the classical theory of multiple zeta values (MZV's), Furusho pro-posed a conjecture asserting that the p-adic MZV's satisfy the same Q-linear relations that their corresponding real-valued MZV counterparts satisfy. In this paper, we verify a stronger version of a function field analogue of Furusho's conjecture in the sense that we are able to deal with all linear relations over an algebraic closure of the given rational function field, not just the rational linear relations. To each tuple of positive integers s = (S-1, ..., s(r)), we con- struct a corresponding t-module together with a specific rational point. The fine resolution (via fiber coproduct) of this construction actually allows us to obtain nice logarithmic interpretations for both the infinity-adic MZV and v-adic MZV at s, completely generalizing the work of Anderson-Thakur (Ann Math (2) 132(1):159-191, 1990) in the case of r = 1. Furthermore it enables us to apply Yu's sub-t-module theorem (Yu in Ann Math (2) 145(2):215-233, 1997), connecting any infinity-adic linear relation on MZV's with a sub-t-module of a corresponding giant t-module. This makes it possible to arrive at the same linear relation for v-adic MZV's.
引用
收藏
页码:49 / 102
页数:54
相关论文
共 50 条
  • [41] Some cases of Vojta's conjecture on integral points over function fields
    Corvaja, Pietro
    Zannier, Umberto
    JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (02) : 295 - 333
  • [42] FIBERED THREEFOLDS AND LANG-VOJTA'S CONJECTURE OVER FUNCTION FIELDS
    Turchet, Amos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) : 8537 - 8558
  • [43] On the Section Conjecture over Local Fields
    Stix, Jakob
    RATIONAL POINTS AND ARITHMETIC OF FUNDAMENTAL GROUPS: EVIDENCE FOR THE SECTION CONJECTURE, 2013, 2054 : 207 - 212
  • [44] On the Ramanujan conjecture over number fields
    Blomer, Valentin
    Brumley, Farrell
    ANNALS OF MATHEMATICS, 2011, 174 (01) : 581 - 605
  • [45] On a refined Stark conjecture for function fields
    Popescu, CD
    COMPOSITIO MATHEMATICA, 1999, 116 (03) : 321 - 367
  • [46] On Gekeler's conjecture for function fields
    Anglès, B
    JOURNAL OF NUMBER THEORY, 2001, 87 (02) : 242 - 252
  • [47] Newman's conjecture in function fields
    Chang, Alan
    Mehrle, David
    Miller, Steven J.
    Reiter, Tomer
    Stahl, Joseph
    Yott, Dylan
    JOURNAL OF NUMBER THEORY, 2015, 157 : 154 - 169
  • [48] Bounded height conjecture for function fields
    Ghioca, Dragos
    Masser, David
    Zannier, Umberto
    NEW YORK JOURNAL OF MATHEMATICS, 2015, 21 : 837 - 846
  • [49] On the Ramanujan-Petersson conjecture over function fields .1. Geometric study
    Lafforgue, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (07): : 605 - 608
  • [50] Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields
    Ellenberg, Jordan S.
    Venkatesh, Akshay
    Westerland, Craig
    ANNALS OF MATHEMATICS, 2016, 183 (03) : 729 - 786