Stochastic adaptation of importance sampler

被引:0
|
作者
Lian, Heng [1 ]
机构
[1] Nanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, Singapore
关键词
adaptive algorithm; importance sampling; stochastic approximation; APPROXIMATION; CONVERGENCE; ALGORITHM;
D O I
10.1080/02331888.2011.555549
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Improving efficiency of the importance sampler is at the centre of research on Monte Carlo methods. While the adaptive approach is usually not so straightforward within the Markov chain Monte Carlo framework, the counterpart in importance sampling can be justified and validated easily. We propose an iterative adaptation method for learning the proposal distribution of an importance sampler based on stochastic approximation. The stochastic approximation method can recruit general iterative optimization techniques like the minorization-maximization algorithm. The effectiveness of the approach in optimizing the Kullback divergence between the proposal distribution and the target is demonstrated using several examples.
引用
收藏
页码:777 / 785
页数:9
相关论文
共 50 条
  • [1] A STOCHASTIC SAMPLER
    KLAUDER, JR
    STOCHASTIC PROCESSES IN ASTROPHYSICS, 1993, 706 : 1 - 7
  • [2] Stochastic Bouncy Particle Sampler
    Pakman, Ari
    Gilboa, Dar
    Carlson, David
    Paninski, Liam
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [3] AN ADAPTIVE POPULATION IMPORTANCE SAMPLER
    Martino, Luca
    Elvira, Victor
    Luengo, David
    Corander, Jukka
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [4] Characterizations, stochastic equations, and the Gibbs sampler
    Walker, S
    Damien, P
    JOURNAL OF APPLIED PROBABILITY, 1999, 36 (03) : 747 - 751
  • [5] Stochastic Gradient Monomial Gamma Sampler
    Zhang, Yizhe
    Chen, Changyou
    Gan, Zhe
    Henao, Ricardo
    Carin, Lawrence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [6] A GRADIENT ADAPTIVE POPULATION IMPORTANCE SAMPLER
    Elvira, Victor
    Martino, Luca
    Luengo, David
    Corander, Jukka
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4075 - 4079
  • [7] A VARIATIONAL ADAPTIVE POPULATION IMPORTANCE SAMPLER
    El-Laham, Yousef
    Djuric, Petar M.
    Bugallo, Monica E.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5052 - 5056
  • [8] Importance sampling via the estimated sampler
    Henmi, Masayuki
    Yoshida, Ryo
    Eguchi, Shinto
    BIOMETRIKA, 2007, 94 (04) : 985 - 991
  • [9] Gibbs sampler by sampling-importance-resampling
    Koch, K. R.
    JOURNAL OF GEODESY, 2007, 81 (09) : 581 - 591
  • [10] Gibbs sampler by sampling-importance-resampling
    K. R. Koch
    Journal of Geodesy, 2007, 81 : 581 - 591