Hierarchies of spin models related to Calogero-Moser models

被引:3
|
作者
Inozemtsev, VI [1 ]
Sasaki, R
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] JINR, BLTP, Dubna, Moscow Region, Russia
基金
日本学术振兴会;
关键词
D O I
10.1016/S0550-3213(01)00491-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The universal formulation of spin exchange models related to Calogero-Moser models implies the existence of integrable hierarchies, which have not been explored. We show the general structures and features of the spin exchange model hierarchies by taking as examples the well-known Heisenberg spin chain with the nearest neighbour interactions. The energy spectra of the second member of the hierarchy belonging to the models based on the Ar root systems (r = 3, 4, 5) are explicitly and exactly evaluated. They show many interesting features and in particular, much higher degree of degeneracy than the original Heisenberg model, as expected from the integrability. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:689 / 698
页数:10
相关论文
共 50 条
  • [41] A family of hyperbolic spin Calogero-Moser systems and the spin Toda lattices
    Li, LC
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (06) : 791 - 832
  • [42] A GENERALIZATION OF THE CALOGERO-MOSER SYSTEM
    GIBBONS, J
    HERMSEN, T
    PHYSICA D, 1984, 11 (03): : 337 - 348
  • [43] A∞-modules and Calogero-Moser spaces
    Berest, Yuri
    Chalykh, Oleg
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 607 : 69 - 112
  • [44] On singular Calogero-Moser spaces
    Bellamy, Gwyn
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 315 - 326
  • [45] Singular cotangent bundle reduction & spin Calogero-Moser systems
    Hochgerner, Simon
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (02) : 169 - 192
  • [46] On the Cohomology of Calogero-Moser Spaces
    Bonnafe, Cedric
    Shan, Peng
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (04) : 1091 - 1111
  • [47] Geometry of Calogero-Moser systems
    Biswas, Indranil
    Hurtubise, Jacques
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (09)
  • [48] Spin generalization of the Calogero-Moser hierarchy and the matrix KP hierarchy
    Pashkov, V.
    Zabrodin, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (21)
  • [49] Spin Calogero-Moser systems associated with simple Lie algebras
    Li, LC
    Xu, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (01): : 55 - 60
  • [50] MULTITRANSITIVITY OF CALOGERO-MOSER SPACES
    YURI BEREST
    ALIMJON ESHMATOV
    FARKHOD ESHMATOV
    Transformation Groups, 2016, 21 : 35 - 50