Arithmetic properties of bipartitions with 3-cores

被引:8
|
作者
Xia, Ernest X. W. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
来源
RAMANUJAN JOURNAL | 2015年 / 38卷 / 03期
基金
中国国家自然科学基金;
关键词
Bipartitions; t-cores; Congruences; OVERPARTITION PAIRS; PARTS DISTINCT; CONGRUENCES; PARTITIONS; IDENTITIES; ANALOGS; CORES;
D O I
10.1007/s11139-014-9643-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Lin discovered several nice congruences modulo 4, 5, 7 and 8 for A(3)(n), where A(3)(n) is the number of bipartitions with 3-cores of n. For example, Lin proved that for all alpha >= 0 and n >= 0, A(3)(16(alpha+1)n + 24(alpha+3)-2/3) = 0 (mod 5). Yao also established several infinite families of congruences modulo 3 and 9 for A(9)(n). In this paper, several infinite families of congruences modulo 4, 8 and 4(k)-1/3 (k >= 2) for A(3)(n) are established. We generalize some results due to Lin and Yao. For example, we prove that for n >= 0, a = 0 and k >= 2, A(3)(4(k(alpha+1))n + 2(2k(alpha+1)-1)-2/3) = 0 (mod 4(k)-1/3).
引用
收藏
页码:529 / 548
页数:20
相关论文
共 50 条
  • [41] Arithmetic properties for cubic partition pairs modulo powers of 3
    Shane Chern
    [J]. Acta Mathematica Sinica, English Series, 2017, 33 : 1504 - 1512
  • [42] FFT-Based Dense Polynomial Arithmetic on Multi-cores
    Maza, Marc Moreno
    Xie, Yuzhen
    [J]. HIGH PERFORMANCE COMPUTING SYSTEMS AND APPLICATIONS, 2010, 5976 : 378 - +
  • [43] Enhanced emulated digital CNN-UM (CASTLE) arithmetic cores
    Hidviégi, T
    Keresztes, P
    Szolgay, P
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2003, 12 (06) : 711 - 738
  • [44] Arithmetic properties of polynomials
    Yong Zhang
    Zhongyan Shen
    [J]. Periodica Mathematica Hungarica, 2020, 81 : 134 - 148
  • [45] Elliptic Curve GF(p) Point Multiplier by Dual Arithmetic Cores
    Wu, Tao
    [J]. PROCEEDINGS OF 2015 IEEE 11TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2015,
  • [46] New approach to design for reusability of arithmetic cores in systems-on-chip
    Margala, M
    Wang, HF
    [J]. INTEGRATION-THE VLSI JOURNAL, 2004, 38 (02) : 185 - 203
  • [47] ON ARITHMETIC PROPERTIES OF SUMSETS
    Balog, A.
    Rivat, J.
    Sarkoezy, A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) : 18 - 42
  • [48] Arithmetic properties of polynomials
    Zhang, Yong
    Shen, Zhongyan
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2020, 81 (01) : 134 - 148
  • [49] On arithmetic properties of sumsets
    A. Balog
    J. Rivat
    A. Sárközy
    [J]. Acta Mathematica Hungarica, 2014, 144 : 18 - 42
  • [50] Efficient Implementation of Scan Register Insertion on Integer Arithmetic Cores for FPGAs
    Palchaudhuri, Ayan
    Dhar, Anindya Sundar
    [J]. 2016 29TH INTERNATIONAL CONFERENCE ON VLSI DESIGN AND 2016 15TH INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS (VLSID), 2016, : 433 - 438