Improving Geometric Semantic Genetic Programming with Safe Tree Initialisation

被引:14
|
作者
Dick, Grant [1 ]
机构
[1] Univ Otago, Dept Informat Sci, Dunedin, New Zealand
来源
关键词
Genetic programming; Semantic methods; Interval arithmetic; Safe initialisation; Symbolic regression;
D O I
10.1007/978-3-319-16501-1_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Researchers in genetic programming (GP) are increasingly looking to semantic methods to increase the efficacy of search. Semantic methods aim to increase the likelihood that a structural change made in an individual will be correlated with a change in behaviour. Recent work has promoted the use of geometric semantic methods, where offspring are generated within a bounded interval of the parents' behavioural space. Extensions of this approach use random trees wrapped in logistic functions to parameterise the blending of parents. This paper identifies limitations in the logistic wrapper approach, and suggests an alternative approach based on safe initialisation using interval arithmetic to produce offspring. The proposed method demonstrates greater search performance than using a logistic wrapper approach, while maintaining an ability to produce offspring that exhibit good generalisation capabilities.
引用
收藏
页码:28 / 40
页数:13
相关论文
共 50 条
  • [21] Self-tuning geometric semantic Genetic Programming
    Castelli, Mauro
    Manzoni, Luca
    Vanneschi, Leonardo
    Silva, Sara
    Popovic, Ales
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2016, 17 (01) : 55 - 74
  • [22] Feature Selection Using Geometric Semantic Genetic Programming
    Rosa, G. H.
    Papa, J. P.
    Papa, L. P.
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 253 - 254
  • [23] Non-generational Geometric Semantic Genetic Programming
    Koga, Daik
    Ohnishi, Kei
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [24] Extending Local Search in Geometric Semantic Genetic Programming
    Castelli, Mauro
    Manzoni, Luca
    Mariot, Luca
    Saletta, Martina
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 775 - 787
  • [25] A geometric semantic genetic programming system for the electoral redistricting problem
    Castelli, Mauro
    Henriques, Roberto
    Vanneschi, Leonardo
    [J]. NEUROCOMPUTING, 2015, 154 : 200 - 207
  • [26] How Noisy Data Affects Geometric Semantic Genetic Programming
    Miranda, Luis F.
    Oliveira, Luiz Otavio V. B.
    Martins, Joao Francisco B. S.
    Pappa, Gisele L.
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 985 - 992
  • [27] A C plus plus framework for geometric semantic genetic programming
    Castelli, Mauro
    Silva, Sara
    Vanneschi, Leonardo
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2015, 16 (01) : 73 - 81
  • [28] Geometric semantic genetic programming with normalized and standardized random programs
    Bakurov, Illya
    Munoz Contreras, Jose Manuel
    Castelli, Mauro
    Rodrigues, Nuno
    Silva, Sara
    Trujillo, Leonardo
    Vanneschi, Leonardo
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2024, 25 (01)
  • [29] Deterministic Geometric Semantic Genetic Programming with Optimal Mate Selection
    Hara, Akira
    Kushida, Jun-ichi
    Takahama, Tetsuyuki
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 3387 - 3392
  • [30] Investigating the Use of Geometric Semantic Operators in Vectorial Genetic Programming
    Azzali, Irene
    Vanneschi, Leonardo
    Giacobini, Mario
    [J]. GENETIC PROGRAMMING, EUROGP 2020, 2020, 12101 : 52 - 67