Improving Geometric Semantic Genetic Programming with Safe Tree Initialisation

被引:14
|
作者
Dick, Grant [1 ]
机构
[1] Univ Otago, Dept Informat Sci, Dunedin, New Zealand
来源
关键词
Genetic programming; Semantic methods; Interval arithmetic; Safe initialisation; Symbolic regression;
D O I
10.1007/978-3-319-16501-1_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Researchers in genetic programming (GP) are increasingly looking to semantic methods to increase the efficacy of search. Semantic methods aim to increase the likelihood that a structural change made in an individual will be correlated with a change in behaviour. Recent work has promoted the use of geometric semantic methods, where offspring are generated within a bounded interval of the parents' behavioural space. Extensions of this approach use random trees wrapped in logistic functions to parameterise the blending of parents. This paper identifies limitations in the logistic wrapper approach, and suggests an alternative approach based on safe initialisation using interval arithmetic to produce offspring. The proposed method demonstrates greater search performance than using a logistic wrapper approach, while maintaining an ability to produce offspring that exhibit good generalisation capabilities.
引用
收藏
页码:28 / 40
页数:13
相关论文
共 50 条
  • [1] Semantic analysis of program initialisation in genetic programming
    Beadle, Lawrence
    Johnson, Colin G.
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2009, 10 (03) : 307 - 337
  • [2] Semantic analysis of program initialisation in genetic programming
    Lawrence Beadle
    Colin G. Johnson
    [J]. Genetic Programming and Evolvable Machines, 2009, 10 : 307 - 337
  • [3] Cellular geometric semantic genetic programming
    Bonin, Lorenzo
    Rovito, Luigi
    De Lorenzo, Andrea
    Manzoni, Luca
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2024, 25 (01)
  • [4] An Introduction to Geometric Semantic Genetic Programming
    Vanneschi, Leonardo
    [J]. NEO 2015, 2017, 663 : 3 - 42
  • [5] Geometric Semantic Genetic Programming Is Overkill
    Pawlak, Tomasz P.
    [J]. GENETIC PROGRAMMING, EUROGP 2016, 2016, 9594 : 246 - 260
  • [6] Geometric Semantic Genetic Programming with Local Search
    Castelli, Mauro
    Trujillo, Leonardo
    Vanneschi, Leonardo
    Silva, Sara
    Z-Flores, Emigdio
    Legrand, Pierrick
    [J]. GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 999 - 1006
  • [7] On the Generalization Ability of Geometric Semantic Genetic Programming
    Goncalves, Ivo
    Silva, Sara
    Fonseca, Carlos M.
    [J]. GENETIC PROGRAMMING (EUROGP 2015), 2015, 9025 : 41 - 52
  • [8] Instance Selection for Geometric Semantic Genetic Programming
    Miranda, Luis Fernando
    Oliveira, Luiz Otavio V. B.
    Martins, Joao Francisco B. S.
    Pappa, Gisele L.
    [J]. 2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [9] Geometric Semantic Genetic Programming for Financial Data
    McDermott, James
    Agapitos, Alexandros
    Brabazon, Anthony
    O'Neill, Michael
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION, 2014, 8602 : 215 - 226
  • [10] Subtree semantic geometric crossover for genetic programming
    Quang Uy Nguyen
    Tuan Anh Pham
    Xuan Hoai Nguyen
    McDermott, James
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2016, 17 (01) : 25 - 53