A nonlinear super-exponential rational model of speculative financial bubbles

被引:65
|
作者
Sornette, D
Andersen, JV
机构
[1] CNRS, UMR 6622, Phys Mat Condensee Lab, F-06108 Nice 2, France
[2] Univ Nice, F-06108 Nice 2, France
[3] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
来源
关键词
rational bubbles; jump processes; nonlinearity; crashes;
D O I
10.1142/S0129183102003085
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Keeping a basic tenet of economic theory, rational expectations, we model the nonlinear positive feedback between agents in the stock market as an interplay between nonlinearity and multiplicative noise. The derived hyperbolic stochastic finite-time singularity formula transforms a Gaussian white noise into a rich time series possessing all the stylized facts of empirical prices, as well as accelerated speculative bubbles preceding crashes. We use the formula to invert the two years of price history prior to the recent crash on the Nasdaq (April 2000) and prior to the crash in the Hong Kong market associated with the Asian crisis in early 1994. These complex price dynamics are captured using only one exponent controlling the explosion, the variance and mean of the underlying random walk. This offers a new and powerful detection tool of speculative bubbles and herding behavior.
引用
收藏
页码:171 / 187
页数:17
相关论文
共 50 条
  • [21] Super-exponential algorithms for multichannel blind deconvolution
    Inouye, Y
    Tanebe, K
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (03) : 881 - 888
  • [22] Performance of super-exponential algorithm for blind equalization
    Chi, CY
    Feng, CC
    Chen, CY
    2000 IEEE 51ST VEHICULAR TECHNOLOGY CONFERENCE, PROCEEDINGS, VOLS 1-3, 2000, : 1864 - 1868
  • [23] Lattice Delone simplices with super-exponential volume
    Santos, Francisco
    Schuermann, Achill
    Vallentin, Frank
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (03) : 801 - 806
  • [24] Super-Exponential Decay of Diffraction Managed Solitons
    Hundertmark, Dirk
    Lee, Young-Ran
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (01) : 1 - 21
  • [25] Reduced computation blind super-exponential equaliser
    Herrmann, F
    Nandi, AK
    ELECTRONICS LETTERS, 1998, 34 (23) : 2208 - 2210
  • [26] Improved super-exponential algorithm for blind equalization
    Wu, Dan
    Gu, Xuemai
    Guo, Qing
    DIGITAL SIGNAL PROCESSING, 2009, 19 (03) : 444 - 451
  • [27] Super-Exponential Decay of Diffraction Managed Solitons
    Dirk Hundertmark
    Young-Ran Lee
    Communications in Mathematical Physics, 2012, 309 : 1 - 21
  • [28] Super-exponential methods for multichannel blind deconvolution
    Inouye, Y
    Tanebe, K
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2353 - 2356
  • [29] From Berry-Esseen to super-exponential
    Courteaut, Klara
    Johansson, Kurt
    Lambert, Gaultier
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 48
  • [30] A super-exponential blind adaptive beamforming algorithm
    Yang, KH
    Ohira, T
    Zhang, YM
    Chi, CY
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3073 - 3076