Smallest nonparametric tolerance regions

被引:0
|
作者
Di Bucchianico, A
Einmahl, JHJ
Mushkudiani, NA
机构
[1] EURANDOM, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Technol Management, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[4] Tilburg Univ, Dept Econometr, NL-5000 LE Tilburg, Netherlands
来源
ANNALS OF STATISTICS | 2001年 / 29卷 / 05期
关键词
nonparametric tolerance region; prediction region; empirical process; asymptotic normality; minimum volume set;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a new, natural way to construct nonparametric multivariate tolerance regions. Unlike the classical nonparametric tolerance intervals, where the endpoints are determined by beforehand chosen order statistics, we take the shortest interval, that contains a certain number of observations. We extend this idea to higher dimensions by replacing the class of intervals by a general class of indexing sets, which specializes to the classes of ellipsoids, hyperrectangles or convex sets. The asymptotic behavior of our tolerance regions is derived using empirical process theory, in particular the concept of generalized quantiles. Finite sample properties of our tolerance regions are investigated through a simulation study. Real data examples are also presented.
引用
收藏
页码:1320 / 1343
页数:24
相关论文
共 50 条