Rough maximal functions supported by subvarieties on Triebel-Lizorkin spaces

被引:20
|
作者
Liu, Feng [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
关键词
Singular integral; Parametric Marcinkiewicz integral; Maximal function; Triebel-Lizorkin space; Besov space; SINGULAR INTEGRAL-OPERATORS; MARCINKIEWICZ INTEGRALS; KERNELS; BOUNDEDNESS; SUBMANIFOLDS;
D O I
10.1007/s13398-017-0400-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the boundedness of a class of maximal functions related to rough singular integrals supported by compound subvarieties on Triebel-Lizorkin spaces and Besov spaces. As applications, several corresponding estimates of maximal functions related to parametric Marcinkiewicz integrals are also presented.
引用
收藏
页码:593 / 614
页数:22
相关论文
共 50 条
  • [1] Rough maximal functions supported by subvarieties on Triebel–Lizorkin spaces
    Feng Liu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 593 - 614
  • [2] Rough maximal singular integral and maximal operators supported by subvarieties on Triebel-Lizorkin spaces
    Liu, Feng
    Xue, Qingying
    Yabuta, Kozo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 171 : 41 - 72
  • [3] Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces
    Liu, Feng
    Xue, Qingying
    Yabuta, Kozo
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (03) : 591 - 604
  • [4] Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    Kôzô Yabuta
    Frontiers of Mathematics in China, 2019, 14 : 591 - 604
  • [5] ROUGH SINGULAR INTEGRALS SUPPORTED BY SUBMANIFOLDS IN TRIEBEL-LIZORKIN SPACES AND BESOVE SPACES
    Liu, Feng
    Wu, Huoxiong
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (01): : 127 - 146
  • [6] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    Kôzô Yabuta
    Science China Mathematics, 2020, 63 : 907 - 936
  • [7] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    K?z? Yabuta
    ScienceChina(Mathematics), 2020, 63 (05) : 907 - 936
  • [8] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Liu, Feng
    Xue, Qingying
    Yabuta, Kozo
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (05) : 907 - 936
  • [9] BOUNDEDNESS OF ROUGH INTEGRAL OPERATORS ON TRIEBEL-LIZORKIN SPACES
    Al-Qassem, H. M.
    Cheng, L. C.
    Pan, Y.
    PUBLICACIONS MATEMATIQUES, 2012, 56 (02) : 261 - 277
  • [10] Some maximal inequalities on Triebel-Lizorkin spaces for p=∞
    Park, Bae Jun
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (05) : 1137 - 1150