ADJUSTING A CONJECTURE OF ERDOS

被引:0
|
作者
Carnielli, Walter [1 ]
Carolino, Pietro K.
机构
[1] State Univ Campinas UNICAMP, Ctr Log Epistemol & Hist Sci, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Erdos conjecture; Littlewood-Offord reverse problem; counterexample;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a conjecture of Paul Erdos, the last unsolved problem among those proposed in his landmark paper [2]. The conjecture states that there exists an absolute constant C > 0 such that, if, v are unit vectors in a Hilbert space, then at least C2(n)/n of all epsilon is an element of {-1, 1}(n) are such that vertical bar Sigma(n)(i=1) epsilon(i)v(i) vertical bar <= 1. We disprove the conjecture. For Hilbert spaces of dimension d > 2, the counterexample is quite strong, and implies that a substantial weakening of the conjecture is necessary. However, for d = 2, only a minor modification is necessary, and it seems to us that it remains a hard problem, worthy of Erdos. We prove some weaker related results that shed some light on the hardness of the problem.
引用
收藏
页码:154 / 159
页数:6
相关论文
共 50 条
  • [1] A conjecture of Erdos
    Faudree, R
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (05): : 451 - 453
  • [2] ON A CONJECTURE OF ERDOS
    Felix, Adam Tyler
    Murty, M. Ram
    MATHEMATIKA, 2012, 58 (02) : 275 - 289
  • [3] On a conjecture of Erdos
    Pilehrood, T. Hessami
    Pilehrood, K. Hessami
    MATHEMATICAL NOTES, 2008, 83 (1-2) : 281 - 284
  • [4] On a conjecture of Erdos
    Chen, Yong-Gao
    Ding, Yuchen
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 971 - 974
  • [5] On a conjecture of Erdos and Stewart
    Luca, F
    MATHEMATICS OF COMPUTATION, 2001, 70 (234) : 893 - 896
  • [6] On a Sumset Conjecture of Erdos
    Di Nasso, Mauro
    Goldbring, Isaac
    Jin, Renling
    Leth, Steven
    Lupini, Martino
    Mahlburg, Karl
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (04): : 795 - 809
  • [7] Erdos and Renyi conjecture
    Shelah, S
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 82 (02) : 179 - 185
  • [8] CONJECTURE OF ERDOS AND RENYI
    KIM, KH
    ROUSH, FW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 23 (FEB) : 179 - 189
  • [9] A counterexample to a conjecture of Erdos
    Bíyíkoglu, T
    DISCRETE MATHEMATICS, 2002, 250 (1-3) : 231 - 232
  • [10] A CONJECTURE BY ERDOS,P
    KUHN, H
    ARCHIV DER MATHEMATIK, 1970, 21 (02) : 185 - &