Existence and convexity of local solutions to degenerate Hessian equations

被引:3
|
作者
Tian, Guji [1 ]
Xu, Chao-Jiang [2 ,3 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[3] Univ Rouen, CNRS, UMR 6085, Lab Math, F-76801 St Etienne Du Rouvray, France
基金
美国国家科学基金会;
关键词
Degenerate Hessian equations; Local solution; Convex solution; Nash-Moser-Hormander iteration; DIRICHLET PROBLEM;
D O I
10.1016/j.jde.2018.01.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we prove the existence of convex solutions to the following k-Hessian equation S-k[u] = K(y) g(y, u, Du) in the neighborhood of a point (y(0), u(0), p(0)) is an element of R-n x R x R-n, where g is an element of C-infinity, g(y(0), u(0), p(0)) > 0, K is an element of C-infinity is nonnegative near y(0), K (y(0)) = 0 and Rank ((DyK)-K-2)(y(0)) >= n - k + 1. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:6025 / 6060
页数:36
相关论文
共 50 条