The Random Forest Approach for Land Cover Mapping

被引:0
|
作者
Aonpong, Panyanat [1 ]
Kasetkasem, Teerasit [1 ]
Rakwatin, Preesan [2 ]
Kumazawa, Itsuo [3 ]
Chanwimaluang, Thitiporn [4 ]
机构
[1] Kasetsart Univ, Dept Elect Engn, Bangkok, Thailand
[2] GISTDA, Govt Complex, Bangkok, Thailand
[3] Tokyo Inst Technol, Imaging Sci & Engn Lab, Midori Ku, R2-59,4266 Nagatsuta Cho, Yokohama, Kanagawa, Japan
[4] NECTEC, Pathum Thani, Thailand
关键词
Land cover mapping; Random Forest; Neighbor-looking; Pixel-based method; Image Processing; classification;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we proposed a new random forest algorithm designed specifically for the land cover mapping problem. Three approaches are investigated, namely, pixel-based, neighbor-looking and combination of both. In the pixel-based approach, we use the fact that all decision trees are different whereas, in the neighbor-looing, the decisions from neighboring pixels are used when the decisions from the Random forest is not clear. Our results on simulated and actual data set showed that our new RF approaches outperformed the traditional one.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [11] A hybrid approach to fuzzy land cover mapping
    Binaghi, E
    Brivio, PA
    Ghezzi, P
    Rampini, A
    Zilioli, E
    [J]. PATTERN RECOGNITION LETTERS, 1996, 17 (13) : 1399 - 1410
  • [12] Land cover and land use mapping of the iSimangaliso Wetland Park, South Africa: comparison of oblique and orthogonal random forest algorithms
    Bassa, Zaakirah
    Bob, Urmilla
    Szantoi, Zoltan
    Ismail, Riyad
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [13] Evaluating the Performance of a Random Forest Kernel for Land Cover Classification
    Zafari, Azar
    Zurita-Milla, Raul
    Izquierdo-Verdiguier, Emma
    [J]. REMOTE SENSING, 2019, 11 (05)
  • [14] Super-resolution land cover mapping using a Markov random field based approach
    Kasetkasem, T
    Arora, MK
    Varshney, PK
    [J]. REMOTE SENSING OF ENVIRONMENT, 2005, 96 (3-4) : 302 - 314
  • [15] Spatial Random Forest (S-RF): A random forest approach for spatially interpolating missing land-cover data with multiple classes
    Holloway-Brown, Jacinta
    Helmstedt, Kate J.
    Mengersen, Kerrie L.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (10) : 3756 - 3776
  • [16] Random forest classification for mangrove land cover mapping using Landsat 5 TM and ALOS PALSAR imageries
    Jhonnerie, Romie
    Siregar, Vincentius P.
    Nababan, Bisman
    Prasetyo, Lilik Budi
    Wouthuyzen, Sam
    [J]. 1ST INTERNATIONAL SYMPOSIUM ON LAPAN-IPB SATELLITE (LISAT) FOR FOOD SECURITY AND ENVIRONMENTAL MONITORING, 2015, 24 : 215 - 221
  • [17] Land Usage Analysis: A Random Forest Approach
    Minallah, Nasru
    Rahman, Hidayat Ur
    Khan, Rehanullah
    Alkhalifah, Ali
    Khan, Shahbaz
    [J]. 2015 7TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2015, : 245 - 249
  • [18] Improved forest cover mapping by harmonizing multiple land cover products over China
    Meng, Shili
    Pang, Yong
    Huang, Chengquan
    Li, Zengyuan
    [J]. GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 1570 - 1597
  • [19] Multisensor approach to land use and land cover mapping in Brazilian Amazon
    Prudente, Victor Hugo Rohden
    Skakun, Sergii
    Oldoni, Lucas Volochen
    Xaud, Haron A. M.
    Xaud, Maristela R.
    Adami, Marcos
    Sanches, Ieda Del ' Arco
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 189 : 95 - 109
  • [20] An improved semiautomatic segmentation approach to land cover mapping for identification of land cover change and trend
    M. T. H. Shubho
    S. R. Islam
    B. D. Ayon
    I. Islam
    [J]. International Journal of Environmental Science and Technology, 2015, 12 : 2593 - 2602