Perturbative method for maximum likelihood estimation of the Weibull distribution parameters

被引:7
|
作者
Coria, V. H. [1 ]
Maximov, S. [1 ]
Rivas-Davalos, F. [1 ]
Melchor-Hernandez, C. L. [1 ]
机构
[1] Inst Tecnol Morelia, Morelia, Michoacan, Mexico
来源
SPRINGERPLUS | 2016年 / 5卷
关键词
Weibull distribution; Maximum likelihood estimation; Parameter estimation; Censored data; Perturbation theory; INFERENCE;
D O I
10.1186/s40064-016-3500-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The two-parameter Weibull distribution is the predominant distribution in reliability and lifetime data analysis. The classical approach for estimating the scale (alpha) and shape (beta) parameters employs the maximum likelihood estimation (MLE) method. However, most MLE based-methods resort to numerical or graphical techniques due to the lack of closed-form expressions for the Weibull beta parameter. A Weibull beta parameter estimator based on perturbation theory is proposed in this work. An explicit expression for beta is obtained, making the estimation of both parameters straightforward. Several right-censored lifetime data sets with different sample sizes and censoring percentages were analyzed in order to assess the performance of the proposed estimator. Study case results show that our parameter estimator provides solutions of high accuracy, overpassing limitations of other parameter estimators.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Improved Maximum Likelihood Estimation for the Weibull Distribution Under Length-Biased Sampling
    Giles, David E.
    [J]. JOURNAL OF QUANTITATIVE ECONOMICS, 2021, 19 (SUPPL 1) : 59 - 77
  • [42] Maximum Likelihood Estimation for Three-Parameter Weibull Distribution Using Evolutionary Strategy
    Yang, Fan
    Ren, Hu
    Hu, Zhili
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [43] Modified Maximum Likelihood Estimation of the Inverse Weibull Model
    Kayid, Mohamed
    Alshehri, Mashael A.
    [J]. AXIOMS, 2023, 12 (10)
  • [44] MAXIMUM-LIKELIHOOD ESTIMATION FOR THE EXPONENTIAL AND WEIBULL MODELS
    ROCKETTE, HE
    HARPER, J
    [J]. CONTROLLED CLINICAL TRIALS, 1982, 3 (02): : 140 - 140
  • [45] Bias-Corrected Maximum Likelihood Estimators of the Parameters of the Unit-Weibull Distribution
    Mazucheli, J.
    Menezes, A. F. B.
    Alqallaf, F.
    Ghitany, M. E.
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2021, 50 (03) : 41 - 53
  • [46] MAXIMUM LIKELIHOOD ESTIMATION, EXACT CONFIDENCE INTERVALS FOR RELIABILITY, AND TOLERANCE LIMITS IN WEIBULL DISTRIBUTION
    THOMAN, DR
    BAIN, LJ
    ANTLE, CE
    [J]. TECHNOMETRICS, 1970, 12 (02) : 363 - &
  • [47] Maximum Likelihood Estimation of Weibull Distribution Based on Random Censored Data and Its Application
    Li, Haibo
    Zhang, Zhengping
    Hu, Yanping
    Zheng, Deqiang
    [J]. PROCEEDINGS OF 2009 8TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY AND SAFETY, VOLS I AND II: HIGHLY RELIABLE, EASY TO MAINTAIN AND READY TO SUPPORT, 2009, : 302 - 304
  • [48] Improved Maximum Likelihood Estimation for the Weibull Distribution Under Length-Biased Sampling
    David E. Giles
    [J]. Journal of Quantitative Economics, 2021, 19 : 59 - 77
  • [49] ESTIMATION OF PARAMETERS OF WEIBULL DISTRIBUTION
    WHITE, JS
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (04): : 1502 - &
  • [50] ESTIMATION OF PARAMETERS IN WEIBULL DISTRIBUTION
    BAIN, LJ
    ANTLE, CE
    [J]. TECHNOMETRICS, 1967, 9 (04) : 621 - &