Minimax estimation of deterministic parameters in linear models with a random model matrix

被引:16
|
作者
Eldar, YC [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
linear models; minimax mean-squared error (MSE); mean-squared error (MSE) estimation; random model matrix; regret;
D O I
10.1109/TSP.2005.861734
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of estimating an unknown deterministic parameter vector in a linear model with a random model matrix, with known second-order statistics. We first seek the linear estimator that minimizes the worst-case mean-squared error (MSE) across all parameter vectors whose (possibly weighted) norm is bounded above. We show that the minimax MSE estimator can be found by solving a semidefinite programming problem and develop necessary and sufficient optimality conditions on the minimax MSE estimator. Using these conditions, we derive closed-form expressions for the minimax MSE estimator in some special cases. We then demonstrate, through examples, that the minimax MSE estimator can improve the performance over both a Baysian approach and a least-squares method. We then consider the case in which the norm of the parameter vector is also bounded below. Since the minimax MSE approach cannot account for a nonzero lower bound, we consider, in this case, a minimax regret method in which we seek the estimator that minimizes the worst-case difference between the MSE attainable using a linear estimator that does not know the parameter vector, and the optimal MSE attained using a linear estimator that knows the parameter vector. For analytical tractability, we restrict our attention to the scalar case and develop a closed-form expression for the minimax regret estimator.
引用
收藏
页码:601 / 612
页数:12
相关论文
共 50 条
  • [21] Minimax estimation in the linear model with a relative squared error
    Wilczynski, M
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 127 (1-2) : 205 - 212
  • [22] Quasi-minimax estimation in the partial linear model
    Wu, Jibo
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (06) : 2982 - 2989
  • [23] LINEAR MINIMAX-ESTIMATION IN LINEAR-MODELS WITH AFFINE AND ELLIPSOIDAL RESTRICTIONS
    DRYGAS, H
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1991, 12 (01) : 101 - 113
  • [24] MINIMAX ESTIMATION OF A RANDOM PROBABILITY
    SKIBINSK.M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) : 134 - &
  • [26] Maximum a-posteriori estimation in linear models with a Gaussian model matrix
    Nevat, Ido
    Wiesel, Ami
    Yuan, Jinhong
    Eldar, Yonina C.
    2007 41ST ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1 AND 2, 2007, : 63 - +
  • [27] ESTIMATION OF PARAMETERS IN LINEAR-MODELS
    STEPNIAK, C
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (11): : 1151 - 1154
  • [28] Minimax Admissible Estimate for Multivariate Linear Model under Matrix
    Tian, Li
    Zhu, Xiao-lin
    Gao, Ting-ting
    Zhou, Jin-ming
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 8962 - +
  • [29] On the robust estimation of parameters and states of non linear deterministic systems
    Boutayeb, M
    Frank, PM
    Darouach, M
    ROBUST CONTROL DESIGN (ROCODN'97): A PROCEEDINGS VOLUME FROM THE IFAC SYMPOSIUM, 1997, : 327 - 332
  • [30] Estimation of random-model parameters via linear systems with granulometric inputs
    Balagurunathan, Y
    Dougherty, ER
    MATHEMATICAL MODELING, ESTIMATION, AND IMAGING, 2000, 4121 : 11 - 15