Entanglement classes of permutation-symmetric qudit states: Symmetric operations suffice

被引:19
|
作者
Migdal, Piotr [1 ]
Rodriguez-Laguna, Javier [1 ,2 ]
Lewenstein, Maciej [1 ,3 ]
机构
[1] ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[2] Univ Carlos III Madrid, Dept Math, Madrid, Spain
[3] ICREA, Barcelona 08010, Spain
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 01期
关键词
MULTIPARTITE ENTANGLEMENT;
D O I
10.1103/PhysRevA.88.012335
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze entanglement classes for permutation-symmetric states for n qudits (i.e., d-level systems), with respect to local unitary operations (LU equivalence) and stochastic local operations and classical communication (SLOCC equivalence). In both cases, we show that the search can be restricted to operations where the same local operation acts on all qudits, and we provide an explicit construction for it. Stabilizers of states in the form of one-particle operations preserving permutation symmetry are shown to provide a coarse-grained classification of entanglement classes. We prove that the Jordan form of such one-particle operators is a SLOCC invariant. We find, as representatives of those classes, a discrete set of entangled states that generalize the Greenberger-Horne-Zeilinger and W states for the many-particle qudit case. In the latter case, we introduce the excitation state as a natural generalization of the W state for d > 2.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Geometric measure of entanglement for symmetric states
    Huebener, Robert
    Kleinmann, Matthias
    Wei, Tzu-Chieh
    Gonzalez-Guillen, Carlos
    Guehne, Otfried
    PHYSICAL REVIEW A, 2009, 80 (03):
  • [32] QUANTUM ENTANGLEMENT AND MULTIPARTITE SYMMETRIC STATES
    Chruscinski, Dariusz
    QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 : 59 - 79
  • [33] Tensor eigenvalues and entanglement of symmetric states
    Bohnet-Waldraff, F.
    Braun, D.
    Giraud, O.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [34] Maximum-confidence discrimination among symmetric qudit states
    Jimenez, O.
    Solis-Prosser, M. A.
    Delgado, A.
    Neves, L.
    PHYSICAL REVIEW A, 2011, 84 (06)
  • [35] Increase of entanglement by local PT-symmetric operations
    Chen, Shin-Liang
    Chen, Guang-Yin
    Chen, Yueh-Nan
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [36] Entanglement frustration for Gaussian states on symmetric graphs
    Wolf, MM
    Verstraete, F
    Cirac, JI
    PHYSICAL REVIEW LETTERS, 2004, 92 (08)
  • [37] Symmetric multiqudit states: Stars, entanglement, and rotosensors
    Chryssomalakos, Chryssomalis
    Hanotel, Louis
    Guzman-Gonzalez, Edgar
    Braun, Daniel
    Serrano-Ensastiga, Eduardo
    Zyczkowski, Karol
    PHYSICAL REVIEW A, 2021, 104 (01)
  • [38] Geometric Entanglement of Symmetric States and the Majorana Representation
    Aulbach, Martin
    Markham, Damian
    Murao, Mio
    THEORY OF QUANTUM COMPUTATION, COMMUNICATION, AND CRYPTOGRAPHY, 2011, 6519 : 141 - +
  • [39] Multiqubit symmetric states with high geometric entanglement
    Martin, J.
    Giraud, O.
    Braun, P. A.
    Braun, D.
    Bastin, T.
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [40] Entanglement monotones and transformations of symmetric bipartite states
    Girard, Mark W.
    Gour, Gilad
    PHYSICAL REVIEW A, 2017, 95 (01)