A LASSO Chart for Monitoring the Covariance Matrix

被引:26
|
作者
Maboudou-Tchao, Edgard M. [1 ]
Diawara, Norou [2 ]
机构
[1] Univ Cent Florida, Dept Stat, Orlando, FL 32816 USA
[2] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
来源
关键词
Average run length (ARL); covariance matrix; multi standardization; penalized likelihood function; MULTIVARIATE PROCESS VARIABILITY; PENALIZED LIKELIHOOD; MODEL; SELECTION;
D O I
10.1080/16843703.2013.11673310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multivariate control charts are essential tools in multivariate statistical process control. In real applications, when a multivariate process shifts, it occurs in either location or scale. Several methods have been proposed recently to monitor the covariance matrix. Most of these methods use rational subgroups and are used to detect large shifts. In this paper, we propose a new accumulative method, based on penalized likelihood estimators, that uses individual observations and is useful to detect small and persistent shifts in a process when sparsity is present.
引用
收藏
页码:95 / 114
页数:20
相关论文
共 50 条
  • [31] Sparse inverse covariance estimation with the graphical lasso
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Robert
    [J]. BIOSTATISTICS, 2008, 9 (03) : 432 - 441
  • [32] Coordinate descent algorithm for covariance graphical lasso
    Hao Wang
    [J]. Statistics and Computing, 2014, 24 : 521 - 529
  • [33] Multivariate control charts for monitoring the mean vector and covariance matrix
    Reynolds, Marion R., Jr.
    Cho, Gyo-Young
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2006, 38 (03) : 230 - 253
  • [34] Statistical monitoring of the covariance matrix in multivariate processes: A literature review
    Ebadi, Mohsen
    Chenouri, Shojaeddin
    Lin, Dennis K. J.
    Steiner, Stefan H.
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2022, 54 (03) : 269 - 289
  • [35] Monitoring the covariance matrix of bivariate processes with the DVMAX control charts
    Machado, Marcela A. G.
    Ho, Linda Lee
    Quinino, Roberto C.
    Celano, Giovanni
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2022, 38 (01) : 116 - 132
  • [36] Robust Multivariate Lasso Regression with Covariance Estimation
    Chang, Le
    Welsh, A. H.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 961 - 973
  • [37] An algorithm for the multivariate group lasso with covariance estimation
    Wilms, I.
    Croux, C.
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (04) : 668 - 681
  • [38] CUSUM control schemes for monitoring the covariance matrix of multivariate time series
    Bodnar, Olha
    Schmid, Wolfgang
    [J]. STATISTICS, 2017, 51 (04) : 722 - 744
  • [39] Classification of Covariance Matrix Eigenvalues in Polarimetric SAR for Environmental Monitoring Applications
    Addabbo, Pia
    Biondi, Filippo
    Clemente, Carmine
    Orlando, Danilo
    Pallotta, Luca
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2019, 34 (06) : 28 - 43
  • [40] Control charts for monitoring the mean vector and the covariance matrix of bivariate processes
    Marcela A. G. Machado
    Antonio F. B. Costa
    Fernando A. S. Marins
    [J]. The International Journal of Advanced Manufacturing Technology, 2009, 45 : 772 - 785