MH84 improves mitochondrial dysfunction in a mouse model of early Alzheimer's disease

被引:26
|
作者
Pohland, Maximilian [1 ]
Pellowska, Maren [2 ]
Asseburg, Heike [1 ,3 ]
Hagl, Stephanie [1 ]
Reutzel, Martina [3 ]
Joppe, Aljoscha [1 ]
Berressem, Dirk [1 ]
Eckert, Schamim H. [1 ]
Wurglics, Mario [2 ]
Schubert-Zsilavecz, Manfred [2 ]
Eckert, Gunter P. [3 ]
机构
[1] Goethe Univ, Inst Pharmacol, Frankfurt, Germany
[2] Goethe Univ, Inst Pharmaceut Chem, Frankfurt, Germany
[3] Justus Liebig Univ, Inst Nutr Sci, Giessen, Germany
来源
关键词
Alzheimer's disease; Mitochondrial dysfunction; PPAR gamma activator; PGC-1; alpha; APP processing; Amyloid-beta; GAMMA-SECRETASE MODULATORS; AMYLOID-BETA GENERATION; COGNITIVE IMPAIRMENT; CASCADE HYPOTHESIS; CELLULAR-MODEL; PGC-1-ALPHA; BRAIN; ROSIGLITAZONE; METABOLISM; EFFICACY;
D O I
10.1186/s13195-018-0342-6
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Current approved drugs for Alzheimer's disease (AD) only attenuate symptoms, but do not cure the disease. The pirinixic acid derivate MH84 has been characterized as a dual gamma-secretase/proliferator activated receptor gamma (PPAR.) modulator in vitro. Pharmacokinetic studies in mice showed that MH84 is bioavailable after oral administration and reaches the brain. We recently demonstrated that MH84 improved mitochondrial dysfunction in a cellular model of AD. In the present study, we extended the pharmacological characterization of MH84 to 3-month-old Thy-1 A beta PPSL mice (harboring the Swedish and London mutation in human amyloid precursor protein (APP)) which are characterized by enhanced A beta PP processing and cerebral mitochondrial dysfunction, representing a mouse model of early AD. Methods: Three-month-old Thy-1 A beta PPSL mice received 12 mg/kg b.w. MH84 by oral gavage once a day for 21 days. Mitochondrial respiration was analyzed in isolated brain mitochondria, and mitochondrial membrane potential and ATP levels were determined in dissociated brain cells. Citrate synthase (CS) activity was determined in brain tissues and MitoTracker Green fluorescence was measured in HEK293-A beta PPwt and HEK293-A beta PPsw cells. Soluble A beta(1-40) and A beta(1-42) levels were determined using ELISA. Western blot analysis and qRT-PCR were used to measure protein and mRNA levels, respectively. Results: MH84 reduced cerebral levels of the beta-secretase-related C99 peptide and of A beta 40 levels. Mitochondrial dysfunction was ameliorated by restoring complex IV (cytochrome-c oxidase) respiration, mitochondrial membrane potential, and levels of ATP. Induction of PPAR. coactivator-1 alpha (PGC-1 alpha) mRNA and protein expression was identified as a possible mode of action that leads to increased mitochondrial mass as indicated by enhanced CS activity, OXPHOS levels, and MitoTracker Green fluorescence. Conclusions: MH84 modulates beta-secretase processing of APP and improves mitochondrial dysfunction by a PGC-1 alpha-dependent mechanism. Thus, MH84 seems to be a new promising therapeutic agent with approved in-vivo activity for the treatment of AD.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Mitochondrial dysfunction manifests in the early stages of Alzheimer disease
    Heather Wood
    Nature Reviews Neurology, 2020, 16 (5) : 242 - 242
  • [42] Exenatide alleviates mitochondrial dysfunction and cognitive impairment in the 5 x FAD mouse model of Alzheimer's disease
    An, Jingjing
    Zhou, Yu
    Zhang, Mengjun
    Xie, Yunzhen
    Ke, Sujie
    Liu, Libin
    Pan, Xiaodong
    Chen, Zhou
    BEHAVIOURAL BRAIN RESEARCH, 2019, 370
  • [43] Mitochondrial protection improves synaptic plasticity in cell and mouse models of Alzheimer's disease
    Kurz, C.
    Lipka, U.
    Leuner, K.
    Mueller, W. E.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2011, 383 : 45 - 46
  • [44] Impairment of PGC-1α-mediated mitochondrial biogenesis precedes mitochondrial dysfunction and Alzheimer's pathology in the 3xTg mouse model of Alzheimer's disease
    Singulani, Monique Patricio
    Martins Pereira, Carolina Parga
    Fernandes Ferreira, Ana Flavia
    Garcia, Priscila Crespo
    Ferrari, Gustavo Duarte
    Alberici, Luciane Carla
    Britto, Luiz Roberto
    EXPERIMENTAL GERONTOLOGY, 2020, 133
  • [45] Mitochondrial genomic contribution to mitochondrial dysfunction in Alzheimer's disease
    Onyango, Isaac
    Khan, Shaharyar
    Miller, Bradley
    Swerdlow, Russell
    Trimmer, Patricia
    Bennett, James, Jr.
    JOURNAL OF ALZHEIMERS DISEASE, 2006, 9 (02) : 183 - 193
  • [46] Combination of Secondary Plant Metabolites and Micronutrients Improves Mitochondrial Function in a Cell Model of Early Alzheimer's Disease
    Babylon, Lukas
    Meissner, Julia
    Eckert, Gunter P.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)
  • [47] Olesoxime improves cerebral mitochondrial dysfunction and enhances Aβ levels in preclinical models of Alzheimer's disease
    Eckert, Gunter P.
    Eckert, Schamim H.
    Eckmann, Janett
    Hagl, Stephanie
    Muller, Walter E.
    Friedland, Kristina
    EXPERIMENTAL NEUROLOGY, 2020, 329
  • [48] Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease
    Yao, Jia
    Irwin, Ronald W.
    Zhao, Liqin
    Nilsen, Jon
    Hamilton, Ryan T.
    Brinton, Roberta Diaz
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) : 14670 - 14675
  • [49] Early neurovascular dysfunction in a transgenic rat model of Alzheimer’s disease
    Illsung L. Joo
    Aaron Y. Lai
    Paolo Bazzigaluppi
    Margaret M. Koletar
    Adrienne Dorr
    Mary E. Brown
    Lynsie A. M. Thomason
    John G. Sled
    JoAnne McLaurin
    Bojana Stefanovic
    Scientific Reports, 7
  • [50] Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease
    Joo, Illsung L.
    Lai, Aaron Y.
    Bazzigaluppi, Paolo
    Koletar, Margaret M.
    Dorr, Adrienne
    Brown, Mary E.
    Thomason, Lynsie A. M.
    Sled, John G.
    McLaurin, JoAnne
    Stefanovic, Bojana
    SCIENTIFIC REPORTS, 2017, 7