Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter

被引:18
|
作者
Bohner, Martin [2 ]
Kratz, Werner [3 ]
Simon Hilscher, Roman [1 ]
机构
[1] Masaryk Univ, Dept Math & Stat, Fac Sci, CZ-61137 Brno, Czech Republic
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[3] Univ Ulm, Dept Appl Anal, Fac Math & Econ, D-89069 Ulm, Germany
关键词
Linear Hamiltonian system; self-adjoint eigenvalue problem; proper focal point; conjoined basis; finite eigenvalue; oscillation; controllability; normality; quadratic functional msc (2010) 34L05; 34C10; 49N10; 93B60; 34L10; EIGENVALUE ACCUMULATION;
D O I
10.1002/mana.201100172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider linear Hamiltonian differential systems which depend in general nonlinearly on the spectral parameter and with Dirichlet boundary conditions. Our results generalize the known theory of linear Hamiltonian systems in two respects. Namely, we allow nonlinear dependence of the coefficients on the spectral parameter and at the same time we do not impose any controllability and strict normality assumptions. We introduce the notion of a finite eigenvalue and prove the oscillation theorem relating the number of finite eigenvalues which are less than or equal to a given value of the spectral parameter with the number of proper focal points of the principal solution of the system in the considered interval. We also define the corresponding geometric multiplicity of finite eigenvalues in terms of finite eigenfunctions and prove that the algebraic and geometric multiplicities coincide. The results are also new for SturmLiouville differential equations, being special linear Hamiltonian systems.
引用
收藏
页码:1343 / 1356
页数:14
相关论文
共 50 条
  • [41] An Efficient Spectral Petrov-Galerkin Method for Nonlinear Hamiltonian Systems
    An, Jing
    Cao, Waixiang
    Zhang, Zhimin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (05) : 1249 - 1273
  • [42] Nonlinear Spectral Theory
    Cobzas, S.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2005, 50 (01): : 131 - 132
  • [43] The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]
    Peter Howard
    Soyeun Jung
    Bongsuk Kwon
    Journal of Dynamics and Differential Equations, 2018, 30 : 1703 - 1729
  • [44] The Spectral Parameter Estimation Method for Parameter Identification of Linear Fractional Order Systems
    Dabiri, Arman
    Nazari, Morad
    Butcher, Eric A.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 2772 - 2777
  • [45] Renormalized oscillation theory for Hamiltonian systems
    Gesztesy, Fritz
    Zinchenko, Maxim
    ADVANCES IN MATHEMATICS, 2017, 311 : 569 - 597
  • [46] P-index theory for linear Hamiltonian systems and multiple solutions for nonlinear Hamiltonian systems
    Dong, Yujun
    NONLINEARITY, 2006, 19 (06) : 1275 - 1294
  • [47] Spectral theory for the failure of linear control in a nonlinear stochastic system
    Grigoriev, RO
    Handel, A
    PHYSICAL REVIEW E, 2002, 66 (06): : 065301/1 - 065301/4
  • [48] COUPLED OPERATOR SYSTEMS AND MULTI-PARAMETER SPECTRAL THEORY
    ROACH, GF
    SLEEMAN, BD
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1978, 80 : 23 - 34
  • [49] SPECTRAL CONCENTRATION FOR HAMILTONIAN-SYSTEMS
    HINTON, DB
    SHAW, JK
    HELVETICA PHYSICA ACTA, 1985, 58 (06): : 982 - 994
  • [50] Oscillation and spectral theory for symplectic difference systems with separated boundary conditions
    Dosly, Ondrej
    Kratz, Werner
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (07) : 831 - 846