Spatial distribution of hydrogen and other emitters in aluminum laser-induced plasma in air and consequences on spatially integrated Laser-Induced Breakdown Spectroscopy measurements

被引:64
|
作者
De Giacomo, A. [2 ,3 ]
Dell'Aglio, M. [3 ]
Gaudiuso, R. [2 ]
Cristoforetti, G. [1 ]
Legnaioli, S. [1 ]
Palleschi, V. [1 ]
Tognoni, E. [1 ]
机构
[1] CNR, IPCF Inst Chem Phys Proc, Appl Laser Spect Lab, I-56124 Pisa, Italy
[2] Univ Bari, Dept Chem, I-70126 Bari, Italy
[3] CNR, IMIP Sec Bari, I-70126 Bari, Italy
关键词
Hydrogen; Spectrally resolved imaging; LIBS; Species density profiles; Plasma evolution;
D O I
10.1016/j.sab.2008.06.010
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The Stark broadening of hydrogen Balmer alpha line is often measured in Laser-Induced Breakdown Spectroscopy (LIBS) to evaluate the electron number density of the plasma. When measurements are carried out in air, hydrogen atoms are supposedly supplied by the atmosphere. This hypothesis casts some doubts on the validity of hydrogen as an indicator of the conditions in the inner part of the plasma. In this experiment, we acquired spectrally resolved images of a Laser-induced Breakdown Spectroscopy plasma generated in air on an aluminum target by irradiation with the Nd:YAG fundamental emission. The evolution of the plasma was studied by acquiring images at several delay times. In particular, we imaged the spatial distribution of plasma emitters along the direction orthogonal to the target surface. The spatial distribution of hydrogen emission was compared to the one of the species ablated from the sample. Moreover, electron density and temperature were evaluated in the time- and space-resolved spectra extracted from the images, obtaining thus a picture of the propagation and internal structure of the plasma. The fluid dynamics implications of the plasma expansion were discussed. The z-resolved characterization was compared with the picture of the plasma obtained by processing space-integrated spectra. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:980 / 987
页数:8
相关论文
共 50 条
  • [31] Laser-induced breakdown spectroscopy in Asia
    Wang, Zhen-Zhen
    Deguchi, Yoshihiro
    Zhang, Zhen-Zhen
    Wang, Zhe
    Zeng, Xiao-Yan
    Yan, Jun-Jie
    FRONTIERS OF PHYSICS, 2016, 11 (06)
  • [32] Femtosecond laser-induced breakdown spectroscopy
    Labutin, Timur A.
    Lednev, Vasily N.
    Ilyin, Alexey A.
    Popov, Andrey M.
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2016, 31 (01) : 90 - 118
  • [33] Subsea Laser-Induced Breakdown Spectroscopy
    Hendry, David
    SEA TECHNOLOGY, 2008, 49 (10) : 81 - 81
  • [34] Laser-induced breakdown spectroscopy in Asia
    Zhen-Zhen Wang
    Yoshihiro Deguchi
    Zhen-Zhen Zhang
    Zhe Wang
    Xiao-Yan Zeng
    Jun-Jie Yan
    Frontiers of Physics, 2016, 11
  • [35] Laser-Induced Breakdown Spectroscopy in Africa
    Kasem, M. A.
    Harith, M. A.
    JOURNAL OF CHEMISTRY, 2015, 2015
  • [36] Introduction to Laser-induced Breakdown Spectroscopy
    Journal of the Institute of Electrical Engineers of Japan, 2022, 142 (02): : 69 - 72
  • [37] Laser-induced breakdown spectroscopy (LIBS)
    Jagdish P. Singh
    José R. Almirall
    Mohamad Sabsabi
    Andrzej W. Miziolek
    Analytical and Bioanalytical Chemistry, 2011, 400 : 3191 - 3192
  • [38] Chemometrics in laser-induced breakdown spectroscopy
    Zhang, Tianlong
    Tang, Hongsheng
    Li, Hua
    JOURNAL OF CHEMOMETRICS, 2018, 32 (11)
  • [39] Absorption laser-induced breakdown spectroscopy
    Nassef, Olodia Ayed
    Elsayed-Ali, Hani E.
    ADVANCED ENVIRONMENTAL, CHEMICAL, AND BIOLOGICAL SENSING TECHNOLOGIES VI, 2009, 7312
  • [40] Laser-induced breakdown spectroscopy in China
    Zhe Wang
    Ting-Bi Yuan
    Zong-Yu Hou
    Wei-Dong Zhou
    Ji-Dong Lu
    Hong-Bin Ding
    Xiao-Yan Zeng
    Frontiers of Physics, 2014, 9 : 419 - 438