A comprehensive picture of the current rate dependence of the structural evolution of P2-Na2/3 Fe2/3Mn1/3O2

被引:41
|
作者
Sharma, N. [1 ]
Han, M. H. [2 ]
Pramudita, J. C. [1 ]
Gonzalo, E. [2 ]
Brand, H. E. A. [3 ]
Rojo, T. [2 ,4 ]
机构
[1] UNSW Australia, Sch Chem, Sydney, NSW 2052, Australia
[2] CIC Energigune, Minano 01510, Spain
[3] Australian Synchrotron, Clayton, Vic 3168, Australia
[4] Univ Pais Vasco UPV EHU, Dept Quim Inorgan, E-48080 Bilbao, Spain
关键词
NA-ION BATTERIES; X-RAY-DIFFRACTION; ELECTROCHEMICAL PROPERTIES; POSITIVE ELECTRODE; LAYERED MATERIAL; PHASE; CATHODE; CHALLENGES; P2-TYPE;
D O I
10.1039/c5ta04976h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cathodes that feature a layered structure are attractive reversible sodium hosts for ambient temperature sodium-ion batteries which may meet the demands for large-scale energy storage devices. However, crystallographic data on these electrodes are limited to equilibrium or quasi-equilibrium information. Here we report the current-dependent structural evolution of the P2-Na2/3Fe2/3Mn1/3O2 electrode during charge/discharge at different current rates. The structural evolution is highly dependent on the current rate used, e.g., there is significant disorder in the layered structure near the charged state at slower rates and following the cessation of high-current rate cycling. At moderate and high rates this disordered structure does not appear. In addition, at the slower rates the disordered structure persists during subsequent discharge. In all rates examined, we show the presence of an additional two-phase region that has not been observed before, where both phases maintain P6(3)/mmc symmetry but with varying sodium contents. Notably, most of the charge at each current rate is transferred via P2 (P6(3)/mmc) phases with varying sodium contents. This illustrates that the high-rate performance of these electrodes is in part due to the preservation of the P2 structure and the disordered phases appear predominantly at lower rates. Such current-dependent structural information is critical to understand how electrodes function in batteries which can be used to develop optimised charge/discharge routines and better materials.
引用
收藏
页码:21023 / 21038
页数:16
相关论文
共 50 条
  • [41] Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2:: Calcination temperature dependence
    Fujii, Yasuhiro
    Miura, Hiroshi
    Suzuki, Naoto
    Shoji, Takayuki
    Nakayama, Noriaki
    JOURNAL OF POWER SOURCES, 2007, 171 (02) : 894 - 903
  • [42] Study on the Rate Performance of LiCo1/3Ni1/3Mn1/3O2
    Zhang, Dongyun
    Yi, Juan
    Wei, Qun
    Liu, Kun
    Fan, Zhenzhen
    Zhang, Peixin
    POWDER TECHNOLOGY AND APPLICATION III, 2011, 158 : 256 - +
  • [43] Syntheses and electrochemical properties of layered Li0.95Na0.05Ni1/3Co1/3Mn1/3O2 and LiNi1/3Co1/3Mn1/3O2
    Gong, Chunxia
    Lv, Weixin
    Qu, Limin
    Bankole, Oluwatosin Emmanuel
    Li, Guanghua
    Zhang, Rui
    Hu, Meng
    Lei, Lixu
    JOURNAL OF POWER SOURCES, 2014, 247 : 151 - 155
  • [44] In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2-Na2/3Ni1/3Mn2/3O2: Cathode materials for sodium batteries
    Zhong, Xiao-Bin
    He, Chao
    Gao, Fan
    Tian, Zhong-Qun
    Li, Jian-Feng
    JOURNAL OF ENERGY CHEMISTRY, 2021, 53 : 323 - 328
  • [45] Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries
    Zhao, Jie
    Xu, Jing
    Lee, Dae Hoe
    Dimov, Nikolay
    Meng, Ying Shirley
    Okada, Shigeto
    JOURNAL OF POWER SOURCES, 2014, 264 : 235 - 239
  • [46] Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-LiMg1/3Co1/3Mn1/3O2 solid solutions
    Fuji, Yasuhiro
    Miura, Hiroshi
    Suzuki, Naoto
    Shoji, Takayuki
    Nakayama, Noniaki
    SOLID STATE IONICS, 2007, 178 (11-12) : 849 - 857
  • [47] In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2
    Lu, ZH
    Dahn, JR
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (11) : A1225 - A1229
  • [48] An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2
    Singh, Gurpreet
    Acebedo, Begona
    Casas Cabanas, Montse
    Shanmukaraj, Devaraj
    Armand, Michel
    Rojo, Teofilo
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 37 : 61 - 63
  • [49] P2-Na2/3Ni2/3Te1/3O2CathodeforNa-ionBatterieswithHighVoltageandExcellentStability
    Wenhui Wang
    Jiaolong Zhang
    Chaolin Li
    Xiaohang Kou
    Baohua Li
    Denis YWYu
    Energy & Environmental Materials, 2023, 6 (02) : 142 - 149
  • [50] Structural and Na-ion diffusion behavior of O3/P3/P2-type NaNi1/3Mn1/3Fe1/3O2 cathode for Na-ion batteries from first-principles study
    Su, Lei
    Sun, Baozhen
    Wu, Musheng
    Liu, Gang
    Xu, Bo
    Ouyang, Chuying
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (06):