Colorimetric Detection of SARS-CoV-2 Using Plasmonic Biosensors and Smartphones

被引:24
|
作者
Materon, Elsa M. [1 ,2 ]
Gomez, Faustino R. [1 ]
Almeida, Mariana B. [2 ,3 ]
Shimizu, Flavio M. [4 ]
Wong, Ademar [5 ]
Teodoro, Kelcilene B. R. [6 ]
Silva, Filipe S. R. [2 ]
Lima, Manoel J. A. [2 ]
Angelim, Monara Kaelle S. C. [7 ]
Melendez, Matias E. [8 ]
Porras, Nelson [9 ]
Vieira, Pedro M. [7 ]
Correa, Daniel S. [6 ]
Carrilho, Emanuel [2 ,3 ]
Oliveira Jr, Osvaldo N. [1 ]
Azevedo, Ricardo B. [10 ]
Goncalves, Debora [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Inst Phys, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, Sao Carlos Inst Chem, BR-13566590 Sao Carlos, SP, Brazil
[3] Natl Inst Sci & Technol Bioanalyt INCTBio, BR-13083970 Campinas, SP, Brazil
[4] Univ Campinas UNICAMP, Gleb Wataghin Inst Phys IFGW, Dept Appl Phys, BR-13083859 Campinas, SP, Brazil
[5] Fed Univ Sao Carlos UFSCar, Dept Chem, BR-13560970 Sao Carlos, SP, Brazil
[6] Embrapa Instrumentat, Nanotechnol Natl Lab Agr, BR-13560970 Sao Carlos, SP, Brazil
[7] Univ Estadual Campinas, Inst Biol, Dept Genet Evolut Microbiol & Immunol, BR-13083970 Campinas, SP, Brazil
[8] Natl Canc Inst, Mol Carcinogenesis Program, BR-20231050 Rio De Janeiro, RJ, Brazil
[9] Valle Univ, Phys Dept, Cali 25360, Colombia
[10] Univ Brasilia, Inst Biol Sci, Dept Genet & Morphol, Lab Nanobiotechnol, BR-70910900 Brasilia, DF, Brazil
基金
巴西圣保罗研究基金会;
关键词
gold nanoparticles; localized surface plasmon resonance; plasmonic coupling; SARS-CoV-2; point-of-care; machine learning; image processing; portable sensor; GOLD NANOPARTICLES; STABILITY; COVID-19; VIRUS; ACID;
D O I
10.1021/acsami.2c15407
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Low-cost, instrument-free colorimetric tests were developed to detect SARS-CoV-2 using plasmonic biosensors with Au nanoparticles functionalized with polyclonal antibodies (f-AuNPs). Intense color changes were noted with the naked eye owing to plasmon coupling when f-AuNPs form clusters on the virus, with high sensitivity and a detection limit of 0.28 PFU mL(-1) (PFU stands for plaque-forming units) in human saliva. Plasmon coupling was corroborated with computer simulations using the finite-difference time-domain (FDTD) method. The strategies based on preparing plasmonic biosensors with f-AuNPs are robust to permit SARS-CoV-2 detection via dynamic light scattering and UV-vis spectroscopy without interference from other viruses, such as influenza and dengue viruses. The diagnosis was made with a smartphone app after processing the images collected from the smartphone camera, measuring the concentration of SARS-CoV-2. Both image processing and machine learning algorithms were found to provide COVID-19 diagnosis with 100% accuracy for saliva samples. In subsidiary experiments, we observed that the biosensor could be used to detect the virus in river waters without pretreatment. With fast responses and requiring small sample amounts (only 20 mu L), these colorimetric tests can be deployed in any location within the point-of-care diagnosis paradigm for epidemiological control.
引用
收藏
页码:54527 / 54538
页数:12
相关论文
共 50 条
  • [31] Plasmonic photonic biosensor: in situ detection and quantification of SARS-CoV-2 particles
    Islam, Abrar
    Haider, Firoz
    Aoni, Rifat Ahmmed
    Ahmed, Rajib
    OPTICS EXPRESS, 2022, 30 (22) : 40277 - 40291
  • [32] Understanding false positives and the detection of SARS-CoV-2 using the Cepheid Xpert Xpress SARS-CoV-2 and BD MAX SARS-CoV-2 assays
    Navarathna, Dhammika H.
    Sharp, Shawn
    Lukey, Janell
    Arenas, Monica
    Villas, Horace
    Wiley, Linda
    Englett, Ivy
    San Juan, Ma Rowena
    Jinadatha, Chetan
    DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2021, 100 (01)
  • [33] Colorimetric immunosensing using liposome encapsulated MnO2 nanozymes for SARS-CoV-2 antigen detection
    Chu, Chenchen
    Jiang, Mingyang
    Hui, Yun
    Huang, Yueying
    Kong, Weijun
    Zhu, Wenting
    Wei, Jitao
    Wu, Lie
    Huang, Chi
    Yu, Xue-Feng
    Zhao, Zhen
    Zhou, Wenhua
    Geng, Shengyong
    Ji, Ling
    BIOSENSORS & BIOELECTRONICS, 2023, 239
  • [34] Evaluation of Sample Pooling for the Detection of SARS-CoV-2 RNA Using the Cobas SARS-CoV-2 Test
    McMillen, T.
    Jani, K.
    Babady, E.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2020, 22 (11): : S38 - S38
  • [35] Could the SARS-CoV-2 infection be acquired from Smartphones?
    Law, Siukan
    Alnasser, Ali Hassan A.
    Al-Tawfiq, Jaffar A.
    ETHIOPIAN JOURNAL OF HEALTH SCIENCES, 2020, 30 (05) : 853 - 854
  • [36] Polycrystalline Silicon Nanowire Field Effect Transistor Biosensors for SARS-CoV-2 Detection
    Wu, Chi-Chang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (07)
  • [37] Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection
    Susanna K. Elledge
    Xin X. Zhou
    James R. Byrnes
    Alexander J. Martinko
    Irene Lui
    Katarina Pance
    Shion A. Lim
    Jeff E. Glasgow
    Anum A. Glasgow
    Keirstinne Turcios
    Nikita S. Iyer
    Leonel Torres
    Michael J. Peluso
    Timothy J. Henrich
    Taia T. Wang
    Cristina M. Tato
    Kevin K. Leung
    Bryan Greenhouse
    James A. Wells
    Nature Biotechnology, 2021, 39 : 928 - 935
  • [38] The Role of Biosensors in Detection of SARS-CoV-2: State-of-the-Art and Future Prospects
    Roy, Nimisha
    Khadanga, Abhipsha
    Dhwaj, Amar
    Prabhakar, Amit
    Verma, Deepti
    CURRENT NANOSCIENCE, 2024, 20 (05) : 599 - 612
  • [39] Optical Biosensors for Virus Detection: Prospects for SARS-CoV-2/COVID-19
    Maddali, Hemanth
    Miles, Catherine E.
    Kohn, Joachim
    O'Carroll, Deirdre M.
    CHEMBIOCHEM, 2021, 22 (07) : 1176 - 1189
  • [40] Graphene-Based Electrochemical Nano-Biosensors for Detection of SARS-CoV-2
    Sengupta, Joydip
    Hussain, Chaudhery Mustansar
    INORGANICS, 2023, 11 (05)