PARITY VERTEX COLORINGS OF BINOMIAL TREES

被引:4
|
作者
Gregor, Petr [1 ]
Skrekovski, Riste [2 ]
机构
[1] Charles Univ Prague, Dept Theoret Comp Sci & Math Log, Malostranske Nam 25, CR-11800 Prague, Czech Republic
[2] Univ Ljubljana, Dept Math, Ljubljana 1000, Slovenia
关键词
binomial tree; parity coloring; vertex ranking;
D O I
10.7151/dmgt.1595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show for every k >= 1 that the binomial tree of order 3k has a vertex-coloring with 2k + 1 colors such that every path contains some color odd number of times. This disproves a conjecture from [1] asserting that for every tree T the minimal number of colors in a such coloring of T is at least the vertex ranking number of T minus one.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 50 条
  • [1] On vertex-parity edge-colorings
    Luzar, Borut
    Petrusevski, Mirko
    Skrekovski, Riste
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (02) : 373 - 388
  • [2] On vertex-parity edge-colorings
    Borut Lužar
    Mirko Petruševski
    Riste Škrekovski
    Journal of Combinatorial Optimization, 2018, 35 : 373 - 388
  • [3] ON EQUITABLE VERTEX DISTINGUISHING EDGE COLORINGS OF TREES
    Yao, Bing
    Chen, Xiang'en
    Shan, Songling
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 621 - 630
  • [4] ON EQUITABLE VERTEX DISTINGUISHING EDGE COLORINGS OF TREES
    姚兵
    陈祥恩
    镡松龄
    Acta Mathematica Scientia, 2013, 33 (03) : 621 - 630
  • [5] Generalized vertex-colorings of partial k-trees
    Zhou, X
    Kanari, Y
    Nishizeki, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2000, E83A (04) : 671 - 678
  • [6] VERTEX RAINBOW COLORINGS OF GRAPHS
    Fujie-Okamoto, Futaba
    Kolasinski, Kyle
    Lin, Jianwei
    Zhang, Ping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 63 - 80
  • [7] VERTEX COLORINGS WITHOUT ISOLATES
    MAURER, SB
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (03) : 294 - 319
  • [8] BOUNDED VERTEX COLORINGS OF GRAPHS
    HANSEN, P
    HERTZ, A
    KUPLINSKY, J
    DISCRETE MATHEMATICS, 1993, 111 (1-3) : 305 - 312
  • [9] Vertex colorings with a distance restriction
    Chen, GT
    Gyarfas, A
    Schelp, RH
    DISCRETE MATHEMATICS, 1998, 191 (1-3) : 65 - 82
  • [10] Nonrepetitive vertex colorings of graphs
    Harant, Jochen
    Jendrol', Stanislav
    DISCRETE MATHEMATICS, 2012, 312 (02) : 374 - 380